
1. Introduction 

Matter and energy are fundamental components of our physical world. These 
components manifest themselves in a variety of ways under different physical 
conditions and can be affected by a variety of processes. Our interest in this first 
chapter relates specifically to the fusion of light nuclides which forms the basis 
of energy release in stars and which is expected to be harnessed on earth. 

1.1 Matter and Energy 

It is a common observation that matter and energy are closely related. For 
example, a mass of water flowing into the turbines of a hydro-electric plant leads 
to the generation of electricity; the rearrangement of hydrogen, oxygen, and 
carbon in chemical compounds in an internal combustion engine generates power 
to move a car; a neutron-induced splitting of a heavy nucleus produces heat to 
generate steam; two light nuclei may fuse and immediately break: up with the 
reaction products possessing considerable kinetic energy. Each of these examples 
illustrates a transformation from one state of matter and energy to another in 
which an attendant release of energy has occurred. 

These matter-energy transformations may be represented in various forms. 
For the hydro-electric process we may write 

m(hJ)~m(h2) (1.1) 

where m(h l ) and m(h2) is a mass of water at an initial elevation hi and final 
elevation h2; the resultant energy E released can be evaluated by computing 
(mghJ - mgh2), where g is the local acceleration due to gravity. 

An example of an exothermic chemical reaction is suggested by the process 
CH4 +202 ~2H20+C02 (1.2) 

with an energy release of about 5 e V*. 
The case of neutron induced fission of a 235U nucleus is represented by 

n+235U ~Vn+ LPi (1.3) 

where n is a neutron, Pj is a particular reaction product, and n is the number of 
neutrons emitted in this particular process. Here, the total energy released 
possesses a slight dependence on the kinetic energy of the initiating neutron but 

* Appendix A provides equivalents of various physical quantities. 
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is typically close to 200 Me V. 
The fusion reaction likely to be harnessed first is given by 

2 H+3H ~ n+ 4He (1.4) 
with an energy release of 17.6 MeV. Accounting for the fact that the above 
species react as nuclei, we assign in a more compact notation the names deuteron, 
triton, and alpha to the reactants and reaction product, to give 

d + t ~ n + a . (1.5) 
The fundamental features of matter and energy transformation are thus 

evident. In the hydroelectric case, a mass of water has to be raised to a higher 
level of potential energy-performed by nature's water cycle-and it subsequently 
attains a lower state with the difference in potential energy appearing as kinetic 
energy available to generate electricity. For the case of chemical combustion, an 
initial energetic state of the molecules corresponding to the ignition temperature 
of the fuel, has to be attained in order to induce a chemical reaction yielding 
thereupon new chemical compounds. The energy release thereby is due to the 
more tightly bound reaction product compounds with a slightly reduced total 
mass; such a mass defect is generally manifested in energy release-typically in 
the e V range for chemical reactions. In the case of fission, the initiating neutron 
needs to possess some finite kinetic energy in order to stimulate the 
rearrangement of nuclear structure; interestingly, the thermal motion of a neutron 
at room temperature is sufficient for the case involving nuclei such as For 
fusion to occur, the reacting nuclei must possess sufficient kinetic energy to 
overcome the electrostatic repulsion associated with their positive charges before 
nuclear fusion can take place; the alternative of fusion reactions at low 
temperature is also possible and will be discussed later. Again, in the case of 
fission and fusion, the reaction products emerge as more tightly bound nuclei and 
hence the corresponding mass defect determines the quantity of nuclear energy 
release-typically in the Me V range. 

Evidently then, a more complete statement of the above processes is therefore 
provided by writing an expression containing both matter and energy terms in the 
form 

Eill + Mill ~ E out + M out (1.6) 

with the masses measured in energy units, i.e. multiplied by the square of the 
speed of light. The corresponding process is suggested graphically in Fig.I.I. 

The depiction of Fig. 1.1 suggests some useful generalizations. Evidently, a 
measure of the effectiveness and potential viability for energy generation by such 
transformations involves microscopic and macroscopic details of matter-energy 
states before and after the process. In addition, it is also necessary to include 
considerations of the relative supply of the fuel, Min, the toxicity of reaction 
products, MoU[, the magnitude of Eout relative to Ein, as well as other technological, 
economic and ecological considerations. Additional issues may include 
availability of the required technology, deployment schedules, energy conversion 
losses. manae:ement and handline: of the fuel and of its reaction nronncts 
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economic cost-benefit, environmental impact, and others. 

E'n Eout 

c:r> I> 

D> ll> 
Min Mout 

Fig. 1.1: Schematic depiction of matter and energy flow in a matter-energy transformation 
device. The length of the arrows is to suggest a decrease in mass flow, Mout < Min, with a 

corresponding increase in energy flow, Eoul < E in• 

1.2 Matter and Energy Accounting 

Conservation conditions are fundamental aids in the quantitative assessment of 
nuclear processes. Of paramount relevance here is the joint conservation of 
nucleon number and energy associated with an initial ensemble of interacting 
nuclear species of type a and type b which, upon a binary collisional interaction, 

two particles of type d and e: 
a+b~d+e. (1.7) 

Note that the details of the highly transient intermediate processes are not listed
only the initial reactants and the final reaction products are shown. 

An accounting of all participating nucleons is aided by the notation 

A (nUclear named X containing 
zX (1.8)

A nucleons of which Z are protons 

and therefore yields the more complete statement for the reaction of Eq.(1.7) in a 
form which lists the number of nucleons involved in this nuclear rearrangement: 

;·Xa ~~ Xd Xe' (1.9)
• d 

Recall that Aj is the sum of Zj protons and Nj neutrons in the nucleus, Aj = Zj + 
Nucleon number conservation therefore 

Aa + Ab = Ad + Ae (1.10) 

and, similarly for charge conservation we write 
Za+Zb Zd+Ze' (1.11) 

Characterization of energy conservation for reaction (1.7) follows from the 
knowledge that the total energy E* of an ensemble of particles is by the 
sum of their kinetic energies Ek and their rest mass Er=, here m is 
the rest mass of the particle and c is the speed of light in free space. The total 
energy of an assemblY of oarticles. for which we add the asterisk notation. is 
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therefore 

E* =I.(E k,j + E r,j ) = I.(E k,j + (1.12) 
j j 

For the nuclear reaction of Eq.(1.7) we write the total energy-which must be 
conserved-as 

E;efore =E:jter (1. 13a) 
and hence 

Ek,b + mbCz) = + (Ek,e+ meC2 
). (1.13b) 

+ Ek.eJ-( Ek,a+ Ek,bJ= [( ma+ mb)-( md+ me)}/ . (1.14) 
This important equation relates the difference in kinetic energies-before and after 
the collision-to their corresponding differences in rest masses; thus, as shown, a 
change in kinetic energy is related to a change in rest masses. Partic1e rest masses 
have been measured to a very high degree of accuracy allowing therefore the 
ready evaluation of the right-hand part of this equation. This defines the Q-value 
of the reaction 

Qab [(ma+mb)-(md+me)]C2 -[(md+me)-(ma+mb)}C2 

(LISa) 
and represents the quantity of energy associated with the mass difference before 
and after the reaction. Hence, we may write more compactly 

=(-t:..m (1.15b) 

where Am is the mass decrement (i.e. Am = mafter - ffibefore) for the reaction. 
Evidently, Qab is positive if (Am)ab < 0 and otherwise; the former case
involving a decrease of mass in the process-constitutes an exoergic reaction and 
the latter may be termed endoergic. Further, for the case of Qab < 0, the kinetic 
energy of the reaction-initiating particle must exceed this value before a reaction 
can be induced; that is, a threshold energy has to be overcome before the reaction 
will proceed. 

Equation (I.ISb) is a form of the famous relation 

E mc 2 (1.16) 
and asserts-as first proposed by Einstein-that matter and energy are equivalent. 
As a consequence, we may assert that if processes occur which release energy of 
amount E, then a corresponding decrease in rest mass of amount (-Am) must 
have taken place. 

1.3 Component Energies 

A detailed kinematics characterization of reaction (1.7) requires the specification 
of both the kinetic energy and the momentum of the initial state of the reactants a 
and b as well as-depending upon the reaction details desired-the appropriate 
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field forces which may act on the particles. However, some useful relations about 
the energies of the reaction products d and e can be obtained for the simple case 
in which the partic1es possess negligible kinetic relative to the 
Q-value of the reaction, i.e. Ek,a + Ek,b « Qab, and in which the total energy 
liberated is shared by the two reaction products d and e in the form of their 
kinetic energy. Under these conditions, Eqs.(1.14) and (l.ISa) give 

+mdv~ ++me v; ~ Qab . (l.17a) 

Then, restricting this analysis to the case that the centre of mass be at rest, 
Fig.l.2, momentum conservation provides for 

mdvd=meVe' (1.17b) 

Before Collision: 

~ ~ 
rna' Aa. Za mb' Ab' Zb 

During Collision: 

Ina 
\~I 

""= 

After Collision: 

Ek'~Ad'Zd 

Fig. 1.2: Kinematic depiction of a head-on nuclear fusion reaction with the centre of mass 
at rest. 

http:Eqs.(1.14


9 Principles ofFusion Energy 8 

Solving Eq. (l.17b) for either Vd or Ve and substituting into Eq. (1.17a) yields 
kinetic energies Ek,d and Ek,e for the two reaction products: 

Ek.d""(~)Qab' Ek.e:::::(~)Qab' ( 1.18) 
md+me md+me 

For the specific case of d-t fusion, Eq. (1.5), for which Qdt 17.6 MeV, the 
neutron and alpha particle kinetic energies are therefore found to be

E "" ::::: 14.1 MeV, Ek,a "" -!-O..t. 35 MeV.k ,l1 
(1.19) 

Thus, an 80 - 20% energy partitioning occurs between the reaction products. 

1.4 Fusion Fuels 

Observations of natural and induced processes have shown that numerous types 
of fusion reactions for which Q > 0 can be identified. The variables for different 
reactions are the interacting nuclides", the reaction products which emerge, the 
Q-value of the reaction, and the dependence of the probability for the reaction to 
take place on the kinetic energy of the reactants. The fusion reaction most readily 
attainable under laboratory conditions and which is expected to be the first used 
for power generation purposes is the d-t reaction 

d+t~n+a+17.6MeV. (1.20) 
Another most accessible fusion reaction involves deuterium nuclei as fuel: 

p + t + 4.1 MeV 
d+d~ (1.21 ) 

{ n+h+3.2MeV 

where h is chosen to represent the helium-3 nucleus eHe2+). This representation 
may appear somewhat unusual, but is seen to simplify notation in subsequent 
chapters. Equation 0.21) shows that d-d will fuse via two distinct reaction 
channels known to occur with almost equal probabilities at specific reaction 
conditions. Further, fuel deuterons may also fuse with two of the reaction 
products (tritons and helium-3) giving, in addition to the reactions of Eqs. (1.21) 
and (1.20), 

d + h ~ p + a + 18.3 MeV. 0.22) 
The above fusion reactions involve deuterons and the successively more 

massive light nuclides. Continuing along this pattern, a large number of reaction 
channels have been identified in specific cases of which d-6Li fusion is an 

B displays the light-nuclide part of the Chart of the Nuclides. 
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+n +3.4 MeV 

+ p +5.0 MeV 

d Li~ (1.23) 

+a+n+1.8MeV 

Here, each reaction channel possesses a unique probability of occurrence. 
Fusion reactions involving the lightest nucleus, that is the proton, may occur 

according to the processes 

~ h + a + 4.0 MeV (1.24a) 
6

9B {a+ Li+2.1Mevp+ e~ (L24b) 
d+2a+0.6MeV 

p+llB ~3a+ 8.7 MeV (1.24c) 
as well as others. Some reactions based on t and h are 

t + t ~ 2n + a + 11.3 MeV (1.25a) 
h+h~2p+a+ 12.9 MeV (L25b) 

and 
t + h ~ n + p + a + 12.1 MeV. (1.25c) 

Several features associated with fusion reactions need to be noted. First, the 
demonstration of a fusion reaction is not the only consideration 

determining its choice as a fuel in a fusion reactor. Other considerations include 
the difficulty of bringing about such reactions, the availability of fusion fuels, 
and the requirements for attaining a sufficient reaction rate density. 

Another feature of the various fusion reactions listed above needs to be 
emphasized: in each case a different fraction of the reaction Q-value resides in 
the kinetic energy of the reaction products. Thus, a fusion reactor concept based 
on high-efficiency direct energy conversion of charged particles would appear 
particularly suitable for those reactions which are characterized by a high fraction 
of the Q-value residing in the kinetic energy of the charged particles. This is of 
particular interest because the neutrons appearing as fusion reaction products 
invariably induce radioactivity in the materials surrounding the fusion core. 

Third, the fusion fuels are evidently the light nuclides displayed on the Chart 
of the Nuclides. In a subsequent chapter we will show that a subatomic short
lived particle called a muon and produced in special accelerators, may also playa 
role as a fusion reaction catalyst. 

Most current fusion research and development activity is based on the 
expectation that the d-t reaction, Eq. (1.20), will be used for the first generation 
fusion reactors. While the world's oceans as well as fresh water lakes and rivers 
contain an ample supply of deuterium with a particle density ratio of d/(p+d) 
lI6700, tritium is scarce; it is a radioactive beta emitter with a half life of 12.3 
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years, with the total steady state atmospheric and oceanic quantity of tritium 
produced by cosmic radiation estimated to be on the order of 50 kg. Since a 1000 
MWt plant will bum about 250 g of tritium each operating day, a station 
inventory in excess of 10 kg will be required for every d-t based central-station 
fusion power plant so that other sources of tritium fuel are required. 

The main source of tritium is expected to be its breeding by capture of the 
fusion neutron in lithium contained in a blanket surrounding the fusion core. The 
relevant reactions in and 7Li are 

n+6Li -7 t + a (1.26a) 
and 

n+ 7Li -7 t + a + n (1.26b) 

with the latter possessing a high energy threshold ~hresh :::: 2.47 MeV. Lithium-6 
and lithium-7 are naturally occurring stable isotopes existing with 7.5% and 
92.5% abundance, respectively, and exist terrestrially in considerable quantity. 

Additional sources of tritium may involve its extraction from the coolant and 
moderator of existing fission reactors, particularly heavy water reactors, where 
tritium is incidentally produced by neutron capture in deuterium via 

n+2H-73H. (1.27) 
Of course, tritium could also be produced by placing lithium into control and 
shim rods of fission reactors. 

Reaction (1.26b) is particularly interesting because the inelastically scattered 
neutron appearing at lower energy can continue to breed more tritium. Thus, in 
principle, it could be possible in such a system to produce more than 1 triton per 
neutron born in the d-t reaction. Indeed, present concepts for d-t reactors 
generally assume a lithium-based blanket surrounding the fusion core that allows 
for tritium self-sufficiency. These and additional concepts will be discussed in 
subsequent chapters. 

1.5 Fusion in Nature 

While a very small number of fusion reactions occur naturally under existing 
terrestrial conditions, the most spectacular steady state fusion processes occur in 
stellar media. Indeed, the formation of elements and the associated nuclear 
energy releases are conceived of as occurring in the burning of hydrogen during 
the gravitational collapse of a stellar proton gas; the initiating fusion process is 

p + P -7 d + f3+ + V + 1.2 MeV (1.28) 

where Wrepresents a positron and v a neutrino. Then, the deuteron thus formed 
may react with a background proton according to 

p+d-7h+5.5MeV. (1.29) 

Subsequently, this helium-3 reaction product could fuse with another helium-3 
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nucleus to an alpha particle and two protons: 
h+h-7a+2p+12.9MeV. (1.30) 

The next heavier element is beryllium, produced by 
7h + a-7 Be + 1.6 MeV (1.31) 

and is an example of a rare he1ium-4 fusion reaction. Also, lithium may appear by 
7Be + fr -77Li + 0.06 MeV . 

(1.32) 
A progression towards increasingly heavier nuclides is thus evident. This process 
is known as nucleosynthesis and provides a characterization for the initial stages 
of formation of all known nuclides. 

Closed fusion cycles have also been identified of which the Carbon cycle is 
particularly important: 

12C+ +1.9MeV 

13 N-7I3C + fY + v + 1.5 MeV 

J3C+ p-7 14 N +7.6 MeV 
(1.33)

14 N + p-7 150+7.3 MeV 

150-715N + fY + v+ 1.8 MeV 

15 N + p-7 12 C + a + 5.0 MeV. 

This sequence of linked reactions is graphically depicted in Fig. 1.3 and may be 
collectively represented by 

4p -7 a + 2 f3+ + 2v + 25.1 MeV (1.34) 

if all the reactions of (1.33) proceed at identical rates. This relation suggests 
that protonium burns due to the catalytic action of the isotopes 12C, 13C, 13N, 14N, 

and 150. 
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Fig. 1.3: Graphical depiction of the Carbon fusion cycle. 
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Problems 

1.1 Determine the energy released per mass-of-atoms initially involved for a 
chemical process, Eq.(1.2), for nuclear fission, Eq.(1.3), for nuclear fusion, 
Eq.(1.5) and for a water molecule falling through a 100 m elevation difference in 
a hydroelectric plant. 

('1).) Calculate the reaction Q-values for each of the two branches of the d-d 
'fu;;ion reaction, Eq.O.21). 

1.3 What fraction of the original mass in d-t fusion is actually converted into 
energy? Compare this to the case of nuclear fission, Eq.{1.3). 

1.4 Calculate the kinetic energies of the reaction products h and a resulting 
from p-6Li fusion, Eq.( 1.24a), ignoring any initial motion of the reactants. 

Calculate the total fusion energy, in Joules, residing in a litre of water if 
the deuterons were to fuse according to Eq.(1.21). 

1.6 Redo problem 1.5 including the burning of the bred tritium according to 
Eq. (1.20). 

1.7 Consult an astronomy text in order to estimate the mean fusion power 
density (Wm·3

) in the sun; compare this to a typical power density in a fission 
reactor. 

1.8 The first artificial nuclear transmutation without the use of radioactive 
substances was successfully carried out in the Rutherford Laboratory by 
Cockcroft and Walton when they bombarded Lithium (at rest) with 100 keY 
proton canal rays (protons accelerated by a voltage of 100 kV and passing 
through a hole in the cathode). By scintillations in a Zincblende-screen, the 
appearance of a-particles with a kinetic energy of 8.6 ke V was determined. 

(a) Formulate the law of energy conservation valid for the above experiment 
referring to the nuclear reaction 

; Li+,'H -t 2 ;He 
and find therefrom the reaction energy, Qp7Li, via the involved rest masses (mp, 
IDa= 6.64455 x 10'27 kg, m7Li = 11.64743 x 10'27 kg). 

(b) In the Cockcroft-Walton experiment, conservation of momentum was 
proven by cloud chamber imaging whereby it was observed that the tracks of the 
two a-particles diverge at an angle of 175°. What angle follows from the law of 
momentum conservation by calculation? 

(c) A further reaction induced by the protons in natural lithium is 

in.troduction 

jLi+,'H-tiHe He 
Provide an argument that shows the a-particles detected in the Cockcroft-Walton 
experiment cannot stem from this reaction. 

http:Eq.(1.21


2. Physical Characterizations 

A number of fusion reactions of interest were listed in the preceding chapter but 
little reference was made to the conditions under which these reactions might 
occur. We now consider the fusion process itself and some characterizations of 
conditions which are fundamental to an understanding of controlled nuclear 
fusion. 

2.1 Particles and Forces 

The general fusion reaction, Eq.(1.7) and Fig. 1.2, may be more completely 
characterized by noting that an unstable intermediate state may be identified in 
nuclear reactions. That is, we should write 

a + b -7 (ab)-7 d + e + Qab (2.1) 

where (ab) identifies a complex short-lived dynamic state which disintegrates 
into products d and e. The energetics are determined according to nucleon 
kinetics analysis, with nuclear excitation and subsequent gamma ray emission 
known to playa comparatively small role in fusion processes at the energies of 
interest envisaged for fusion reactors. 

Two-body interactions can be examined from various perspectives. For 
example, Newton's familiar law of gravitational attraction applies to any pair of 
masses rna and mb to yield a force 

F g,a =-G (2.2) 

effective on particle a. Here, G is the universal gravitational constant and r ra 
rb is the displacement vector between the two interacting particles, while r 
denotes its absolute value. While this force expression is universal, a simple 
calculation will show that for nuclear masses of common interest, this force is 
significantly weaker than the electrostatic and nuclear forces associated with 
nuclides and hence can be neglected. 

The important electrostatic force between two isolated particles of charge qa 
and qb separated by a distance r in free space is determined by Coulomb's law, 
given by 

1 
(2.3)F e,a =411: Ea 
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for the electrostatic force felt by particle a; here £0 is the pennittivity of free 
space and the factor 4n: is extracted from the proportionality constant by reason 
of convention. This force-repulsive for like charges and attractive for unlike 
charges-is of considerable importance in fusion. 

From the definition of work and the phenomenon of energy stored in a 
conservative field, the work done in moving a particle of charge qa from a 
sufficiently distant point to within a distance r of a stationary charge of 
magnitude qb, is the potential energy associated with the resultant charge 
configuration. Specifically, this is given by 

r 

U(r) = fFe.a(r' )dr' 

=	j_1_Qaqbr'.dr' 
~ 411: eo (r'l (2.4) 

1 = J-- Qa Qb (-r'dr') 
r 411: eo (r'l 

_l_QaQb 

411: eo r 

to the restriction that the particle distance of separation r satisfies r ~ Ra + 
Rb where Ra and Rb are the equivalent radii of the two charged particles. For 
nuclides of like charge, the potential energy at approximately the distance of 
"contact" Ro =Ra + Rb, is called the Coulomb barrier and, in view of Eq.(2.4), is 
given by 

1 
(2.5)

U( Ro) 411: eo (Ro + Rb) 

On the basis of electrostatic force considerations only, this then is the minimum 
kinetic energy an incident particle would have to possess in order to overcome 
electrostatic repulsion and come close enough to another particle for the short
range nuclear forces of attraction to dominate. For deuterium ions, this energy 
can be calculated to be about 0.4 MeV, depending upon the value for Ro. 
A useful approximation is Ro = Rp(A~3 +A~3) where Rp (1.3-1.7)XlO· 15 m 

denotes the radius of a proton which cannot be assigned a definite for 
quantum mechanical reasons. 

Consideration of quantum mechanical tunneling provides for a non-vanishing 
probability of penetrating the Coulomb barrier with energies less than U(Ro). The 
nrobabilitv for this penetration varies as 

Pr(tunneling)= ..!..-exp(- y ""10""1(} I 	 (2.6) 
Vr Vr 

where Vr is the relative speed of the particles and y is a constant. Thus, 

rnYSICat LnaraCrenzanons 

even at very low energy, a nucleus possesses a small, though finite, probability of 
compound formation with another nucleus. This compound can decay into fusion 
products and hence, some fusion reactions will also occur at room temperature, 

at an insignificant rate. 
At sufficiently small distances, r < Ro, the attractive strong nuclear force 

dominates and a compound nuclear state is formed. The kinetic energy of the 
initiating particles together with the resultant nuclear potential energy is then 
shared by all the nucleons. Nuclear stability considerations thereupon determine 
if and how the nucleus disintegrates. Figure 2.1 provides a graphical 
representation of these effects. 

/U(Ro) 

t 
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;::) ~ 
~ 6. 
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o I fR '+ Rb]I a
'E s:: 
~ :8 
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:i 
~ 
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Distance, r 

Fig. 2.1: Depiction of the ion-ion electrostatic repulsive potential for r > Ro and nuclear 
attraction for r < Ro. 

2.2 Thermal Kinetics 

The recognition that the Coulomb barrier for light ion fusion is in the 0.4 Me V 
range for the lightest known nuclides-p, d, and t-suggests that one approach to 
the attainment of frequent fusion reactions would be to heat a hydrogen gas up to 
a temperature for which a sufficient number of nuclei possess energies of relative 
motion in excess of U(Ro), Eq.(2.5). However, because of the tunneling effect, 
such excessive heating is not required and substantial rates of fusion reactions are 

http:j_1_Qaqbr'.dr
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achieved even when the average kinetic energy of relative motion of the reactant 
nuclei is in the tens-of-keV range. Note, however, that even providing such 
reduced conditions in a gas will be associated with heating up to temperatures 
near - K, for which, in recognition of the ionization potential of hydrogen 
being only 13.6 eV, the gas will completely ionize. The result therefore is an 
electrostatically neutral medium of freely moving electrons and positive ions 
called a plasma. With the average ion energy in a fusion reactor plasma thus 
allowed to be substantially less than the Coulomb barrier, the energy released 
from fusion reactions must exceed-for a viable energy system-the total energy 
initially supplied to heat and ionize the gas, and to confine the plasma thus 
produced. In practice, this means that when a sufficiently high plasma 
temperature has been attained, we have to sustain this temperature and confine 
the ions long enough until the total fusion energy released exceeds the total 
energy supplied. In subsequent chapters, we will consider some details of the 
relevant phenomena and processes and identify parametric descriptions of energy 
balances. 

On the basis of the above considerations then, it is apparent that selected 
aspects of the classical Kinetic Theory of Gases, augmented by electromagnetic 
force effects, can be used as a basis for the study of a plasma in which fusion 
reactions occur. Thus, for the case of N atoms of proton number Z, complete 
ionization yields Ni ions and, in the case of charge neutrality, ZNj =Ne electrons; 
that is 

N -+ Ni+ Ne= Ni+ ZiNi . (2.7) 

For hydrogenic atoms, Zj = 1 and hence Ne = Nj. 
Often, the expression "Fourth State of Matter" is also assigned to such an 

assembly of globally neutral matter containing a sufficient number of 
particles so that the physical properties of the medium are substantially affected 
by electromagnetic interactions. Indeed, such a plasma may also exhibit 
collective behaviour somewhat like a viscous fluid and also possesses 
electrostatic characteristics of specified spatial dimension. 

For a state of thermodynamic equilibrium, the Kinetic Theory of Gases 
asserts that the local pressure associated with the thermal motion of ions and 
electrons is given by 

Pi == +Nimi v; (2.8a) 

and 

Pe= v; (2.8b) 

where the subscripts i and e refer to the ions and electrons respectively, and N{) 
refers to the subscript-indicated particle population densities; note that it is the 
average of the squared velocity which appears as the important factor. The 
average kinetic energy of the electrons and ions can be introduced by simple 
algebraic manipulation of the above equations: 

Physical Characterizations 

V2] 1. N. (2.9a)~= i 3 / 

and 

Pe=tNe[tme =tNeEe' (2.9a) 

Similar expressions may be written for the neutral particles in a plasma. 
Accepting the kinetic theory of gases as a sufficiently accurate description 

allows for the use of well-known distribution functions. Implicit in this 
assumption is that the plasma under consideration is sufficiently close to 
thermodynamic equilibrium and that processes such as inelastic collisions, 
boundary effects and energy dependent removal of particles are of secondary 
importance. 

The distribution functions for the particles of interest include dependencies 
on space, time and either velocity, speed or kinetic energy. Here we take a 
stationary ensemble of N* particles uniformly distributed in space-either neutrals, 
ions or electrons-allowing us to write 

N* M(;) (2.10) 

where ~ is one of the independent characteristic variables of motion-v, v, or E
and M(~) describes how the particles are distributed over the domain of this 
variable. Hence, N(~) is the distribution function of the ensemble of relevant 
particles in ~-space and the symbol MO represents a normalized distribution 
function for the variable ~ such that 

5 1 (2.11a) 

with the integration performed over the entire definition range of the variable 
considered, i.e. 

.. '" '" 

5M(v)dv 5M(v)dv =5 M(E)dE =1. 
o 0 (2.1lb) 

Note that the particle number of the ensemble is given by 
'" '" 
5N( ;)d; == N* 5M( ;)d;= N* . (2.12) 


For a gas or, for the case of interest here, a plasma in thermodynamic 
equilibrium and in the absence of any field force effect, its particles of mass m 
moving in a sufficiently large volume follow the Maxwell-Boltzmann velocity 
distribution function given 

2 J-l.mvM(v)= exp~ . (2.13)
( 

Here k is the Boltzmann constant and T is the absolute temperature for the 
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ensemble. For the case of isotropy, the Maxwellian distribution of speeds is a 
generally satisfactory characterization and is given by 

2)J/2( )3/2 (J V2)
( 2M( v )::.;; ;;. v exp • 2 ; , 0 < v < co. (2.14)

k 

Finally, the corresponding distribution of particles in kinetic energy space E is 
described by the Maxwell-Boltzmann distribution 

2 ( 1 )3/2 ( E)M(E)::. J1i kT ElI2exp - kT ' 0 < E < co. (2.15) 

These three functions are illustrated in Fig.2.2. 

)( 
.:=.. 
:ii: 

:;;
~ 

Speed, v 

w 
~ 

Energy, E 

Fig. 2.2: Schematic depiction of the Maxwell-Boltzmann distribution functions for v , vx
and E as independent variables; in each case, TJ < T2• 

Physical Characterizations 

2.3 Distribution Parameters 

It is most important to recognize that while the particles possess a range of 
velocities, speeds, and energies, the temperature T describes a particular 
distribution function and is a fixed parameter for a given thermal state; changing 
the temperature of the medium will alter the various moments of the function but 
its characteristic shape is retained, Fig.2.2. 

Further, in a volume domain containing a mixture of particles-as in the case 
of a plasma containing electrons, various ion species, and neutrals-each particle 
species may possess a different distribution function characterized by a different 
temperature. Then, however, the entire plasma is not in thermodynamic 
equilibrium. Indeed, in the presence of a magnetic field, even the same species 
may have a different temperature in, say, the direction parallel to the magnetic 
field lines than in the perpendicular direction. Several methods or devices used to 
obtain fusion energy involve plasmas that are just that-not in thermodynamic 
equilibrium. Most that will be considered herein, however, are not so and thus we 
will rely on Maxwell-Boltzmann distributions to characterize many of the 
plasmas that will be discussed in subsequent chapters. 

Having a sufficiently accurate distribution function is of considerable utility. 

For example, the most probable value g-that is the peak of the distribution-is 

found by differentiating and finding the root of 

aM(~)1 ::.0. (2.16) 
a~ l;=~ 

For the three distribution functions listed, Eqs. (2.13), (2.14) and (2.15), this 
yields the following: 

aM(v)I .::.0, vx=O (2.17a) 
avx vx"'vx 

dM( V)/ =0 , V (2kT)112 (2.17b) 
dv v=v m 

and 

dM(E)/ =0, E=fkT. (2.l7c) 
dE E~E 

In (2.17a), the subscript x is to suggest anyone component of the vector v; 
hencev = O. 

A verage values can similarly be found based upon the formal definition of 

- J~(~)d~ 
~= (2.18)JM(~)d~ 

Thus, for the three cases of interest here we get 
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~x = Jvx M(v ) dv x = 0 (i. e. V 0 ) (2. 19a) 

v= (2.l9b)(:~JI2 
and 

E JEM(E)dE=t kT (2.l9c) 
o 

with the particles possessing three degrees of freedom. 
The analysis leading to the depictions of Fig. 2.2 makes it clear that the 

temperature T-here in units of degrees Kelvin, K-is an essential characterization 
of a Maxwellian distribution; hence, the numerical value of T uniquely specifies 
an equilibrium distribution. It has also become common practice to multiply T by 
the Boltzmann constant k and to call this product the kinetic temperature, which 
is obviously expressed in units of energy, either Joules (J) or electron volts (eV) 
with the latter generally preferred. Using this product kT, a Maxwellian 
popUlation at T = 11,609 K may be said to possess a kinetic temperature of 1 eV; 
similarly, a 3 ke V plasma in thermodynamic equilibrium has an absolute 
temperature of 3.48x107 K. 

The convention of interchangeably using energy and temperature, wherein 
the adjective "kinetic" and Boltzmann's constant in kT are commonly 
suppressed, may seem peCUliar, but expressing a physical variable in related units 
is a very common practice. For example, travelers often use time as a measure of 
distance (s =vt) if the speed of transport is understood, test pilots often speak of 
a force of so many g's (F mg), and physicists often quote rest masses in units of 
energy (E = mc2

). 

This convention of using the product kT leads to a number of uses which 
need to be distinguished; we note here several common cases: 

kT (kinetic) temperature of a plasma; 

average energy of Maxwellian-distributed particles; 

= most frequently occurring particle energy of Maxwellian

distributed particles; 

J8 JkT ~ average particle speed of Maxwellian-distributed particles. 
mrc 

2.4 Power and Reaction Rates 

The power in a fusion reactor core is evidently governed by the fusion reaction 
rate. If only one type of fusion process occurs and if this process occurs at the 

L'3Physical Characterizations 

rate density Rfu with Qfu units of energy released per reaction then the fusion 
power generated in a unit volume is given by 

PfU = Rfu QfU . (2.20) 

With Rfu expressed in units of reactions·m,3.s·1 and Qfu in MeV per reaction, the 
units of the power density Pfu are MeV·m,3·s,l which can be converted to the more 

commonly used unit of Watt (W) by the conversion relationship 1 == 1.6 x 
W since 1 W == I J·s ,I. For the case of a uniform power distribution the total 

energy released during a time interval 't in some volume V follows from 

Eq.(2.20) as 

Pfu dt (2.21 a) 

and, at any time t 

dEfUJl. (2.2lb)
Pfu = ( dt V 

That is, energy may be viewed as the area under the power curve while power 
may be interpreted as an instantaneous energy current. 

The energy generated in a given fusion reaction, Qfu in Eq.(2.20), is the "Q
value" of the reaction, Eq.(1.15), and can be experimentally determined or 
extracted from existing tables; this part of the power expression is simple. 
However, the determination of the functional form of the reaction rate density Rfu 
is more difficult but must be specified if the fusion power Pfu is to be computed. 

In order to determine an expression for the fusion reaction rate density, 
consider first the special case of two intersecting beams of monoenergetic 
particles of type a and type b possessing number densities Na and Nb, 

respectively, Fig. 2.3. 
In a unit volume where the two beams intersect, the number of fusion events 

in a unit volume between the two types of particles, at a given time, is given by a 

proportionality relationship of the form 
Rfu oc NaNb Vr (2.22) 

where Vr is the relative speed of the two sets of particles at the point of interest. 
This relation is based on a heuristic plausibility argument for binary interactions. 
Obviously, some idealizations are contained in Fig.2.3 and Eq.(2.22), such as 
particles of varying energy and direction of motion as well as the interaction of 
particles with others of their species not being accounted for, but will be 
considered in subsequent sections. 

The proportionality relationship of Eq.(2.22) can be converted into an 
explicit equation by the introduction of a proportionality factor represented 

here by (jab for a given Vr: 

RfU=aab(Vr)NaNbVr· (2.23) 

http:Eq.(2.22
http:Eq.(2.22
http:Eq.(1.15
http:Eq.(2.20


The subscript ab and the functional dependence on Vr. indicated in O'ab(Vr), is to 
emphasize that the magnitude of this parameter is specifically associated with the 
particular types of interacting particles and their relative speed. The common 
name for O'ab(Vr) is "cross section" and, since all the terms of Eq.(2.23) are 
already dimensionally specified, its units are those of an area. This parameter has 
been assigned the name "barn", abbreviated b, and defined as 

1 b = 10.24 cm2 =10-28 m2 
• (2.24) 

Figure 2.4 illustrates the cross section for a case of deuterium-tritium fusion. 
Note a maximum of a few barns in the Vr = 3 X 106 ms· l range in this figure. 

Type- b 
particles 

Fig. 2.3: Intersection of two particle beams resulting in fusion reactions a + b -t d + e. 

2.5 Sigma-V Parameter 

The fusion reaction rate density expression of Eq.(2.23) is very restrictive since 
all particles were taken to possess a constant speed and their motion was assumed 
to be monodirectional. However, the general case of an ensemble of particles 
possessing a range of speeds and moving in various directions can be introduced 
by extending Eq.(2.23) to include a summation over all particle energies and all 
directions of motion. The integral calculus is ideally suited for this purpose 
requiring, however, that we redefine some terms. Letting therefore the particle 
densities be a function of velocity v endows them with a range of energies and 
range of directions; that is, we progress from simple particle densities which give 
the number of particles per unit volume, to distribution functions describing how 
many particles in a considered position interval move with a certain velocity, 
according to 

r rty:l'tLUt \AtU'ULII::t t;(,UUUH.l 

(2.25a)Na~ Na(va)= NaFa(va} 

and 
Nb ~ Nb( Vb)= Nb Fb( Vb)' (2.25b) 

The terms which have replaced the previous particle densities are distributions in 
the so-called position-velocity phase space. Thus, the velocity distribution 
functions Fa(va) and Fb(vb) satisfy the normalization 

(2.26a)SFa ( Va ) d3 
Va =1 , 

Va 

as well as 
(2.26b)SFb( Vb)d3 Vb =1 . 

Vb 

Here d3v() is to indicate integration over the three velocity components. Hence, 
though we show here only one integral, the implication is that for calculational 
purposes there will be as many integrals as there are scalar components for each 

of the vectors Va and Vb· 
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Fig. 2.4: Fusion cross section for a deuterium beam incident on a tritium target. 
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The relative speed of two interacting particles at a point of interest is, by its 
usual definition, given as 

Vr= (2.27) 

Finally then, a general rate density expression for binary reactions follows by 
extension of Eq.(2.23) over the corresponding velocity space: 

R/u= f f O"jU(!va-vbD\va vbINaFa(va)NbFb(Vb)d3 vad3 vb 
Va Vb (2.28) 

Fa(Va)Fb(VbJd3 vad 3 vb'=NaNbf 
Vo VI> 

By first impressions, this double integral appears formidable, particularly 
when it is realized that the vectors Va and Vb possess, in general, three 
components so that a total of six integrations are required. However, aside from 
any algebraic or numerical problems of evaluation, this integral contains two 
important physical considerations. First, the cross section O"fu(lva - Vbl) must be 
known as a function of the relative speed of the two types of particles, and 
second, the distribution functions Fj(Vi) must be known for both populations of 
particles. 

We note however that Eq.(2.28) possesses all the properties of an averaging 
process in several dimensions; that is, it represents averaging the product O"ab(lva 
Vb)lva - Vbl with two normalized weighting functions FaCva) and Fb(Vb) over all 
velocity components of Va and Vb. Such averaging yields the definition 

< ov >ab = f JO"ab(!Va - Vb!)!Va - Vb! Fa( Va) Fb( vb)d3 Vad 3 Vb' (2.29) 
Vn Vb 

This parameter, here named sigma-v (pronounced "sigma-vee"), is often also 
called the reaction rate parameter. Note the implicit dependence on temperature 
via the distribution functions Fa(va) and Fb(Vb) so that <O"V>ab is a function of 
temperature. 

The reaction rate density involving two distinct types of particles a and b, 
Eq.(2.28), is therefore written in compact form as 

R/u N a Nb < OV>ab . (2.30) 

This sigma-v parameter for the case of d-t fusion under conditions in which both 
the deuterium and tritium ions possess a Maxwellian distribution, that is F()( ) ~ 
M ( )( ) in Eq,(2.29), and where both species possess the same temperature, is 
depicted in Fig.2.5.* Note that generally <O"V>ab will also be a function of space 
and time because the velocity distributions may also depend upon these variables. 

We make two additional comments about the reaction rate density 
expression, Eq.(2.30). First, the assumption of Maxwellian distributions, i.e. 

*Appendix C provides a tabulation of this and other <crv>ab parameters. 

Physical Characterizations 

F()( ) ~ M()( ) as discussed in Sec.2.3, is very frequently made in tabulations of 
sigma-v; the reason for this is because many approaches to the attainment of 
fusion energy rely upon the achievement of plasma conditions that are close to 
thermodynamic equilibrium. For cases where equilibrium conditions do not exist, 
the appropriate distribution functions Fa(va) and Fb(Vb) must be determined and 
used in Eq.(2.29). For example, in some experiments, deuterium beams are 
injected into a tritiated target or into a magnetically confined tritium plasma to 
cause fusion by "beam-target" interactions. In such cases, one substitutes Fd(Vd) 
by a delta distribution function at the velocity Vb(t) characteristic of the 
instantaneous velocity of the beam ions slowing down in the plasma. However, 
Ft(v ) for the plasma target could well be assumed to be Maxwellian at the 

t 

temperature of the tritium plasma. Then the averaged product of 0" and Vr is often 

called the beam-target reactivity < crv > ~t for d-t fusion and is displayed in 

Fig.2.6; it appears to be a function of both the target temperature and the 
instantaneous energy of the slowing-down beam deuterons. 
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Fig. 2.6: Beam target sigma-v parameter for the case of deuterium injection into a tritium 
target of various temperatures. 

Secondly, Eq.(2.30) assumes that the a-type and b-type particles are different 
nuclear species; the case when they might be indistinguishable is treated in a 
subsequent chapter where, in addition to d-t fusion, the case of d-d fusion is also 
considered. 

A demonstration of the occurrence of fusion reactions is readily 
accomplished in a simple experiment employing a small accelerator which 
bombards a tritiated target with deuterium ions of such a high energy that 
slowing down in the target they pass through the most favourable energy range 
for fusion; consider, in particular, the tritium plasma target of Fig.2.6 for this 
purpose. The appearance of neutrons and alphas as reaction products at the 
proper energies is then the proof of fusion events. The objective of fusion energy 
research and development is, however, the attainment of a sufficiently high 
fusion reaction rate density under controlled conditions subject to the overriding 
requirement that the power produced be delivered under generally acceptable 
terms. This is a considerable challenge and to this end a variety of approaches 
have been and continue to be pursued. 

Problems 

2.1 Calculate the ratio of gravitational to electrical forces between a deuteron 

Characterizations 

~ Determine the Coulomb barrier for the nuclear reactions d-t, d-h, and p

2.3 Confirm the correctness of Eqs.(2. 17) and (2.19). 

For Maxwellian distributed tritons at 9 ke V, calculate 
(a) the average kinetic energy, 
(b) the average and 
(c) the kinetic energy derived from the average speed of (b). Compare the 

energies of (a) and (c), and explain any difference. 

Transform M(v), Eq.(2.l4), into M(E), Eq.(2.15), with the aid of the 

appropriate Jacobian. 

2.6 Find M(E) from M(v) for the case of isotropy using spherical co

ordinates. 

2.7 Consult appropriate sources to determine particle densities N (m,3), the 
corresponding energies kT (eV) and temperatures T (K) for the following 
plasmas: outer space, a flame, the ionosphere, commonly attainable laboratory 
discharges and values expected in a magnetically as well as inertially confined 
fusion reactor. Plot these domains on an N vs. kT 

http:Eq.(2.15
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3. Charged Particle Scattering 

A common approach to the achievement and sustainment of fusion reactions 
involves conditions in which the fuel mixture exists in a plasma state. Such a 
state of rapidly moving ions and electrons provides for extensive scattering due 
to Coulomb force effects. These are particularly important because they lead to 
kinetic energy variations amongst particles, and more importantly, to particle 
losses from the reaction region thereby affecting the energy viability of the 
plasma. 

3.1 Collisional Processes 

Collisions between atomic, nuclear, and subnuclear particles take many forms. 
The important process of fusion between light nuclides represents a "discrete" 
inelastic process of nucleon rearrangement in which the reactants lose their 
former identity. In contrast, Coulomb scattering among ions and electrons causes 
"continuous" changes in direction of motion and kinetic energy. All these 
phenomena occur in a plasma to a varying extent and are therefore important in 
all confinement devices. 

There may also exist a need to describe other selected collisional events in a 
fully or partially ionized medium, requiring therefore that the distinguishing 
characteristics of various processes be identified. Among these we note atomic 
processes such as photo-ionization, electron impact excitation, fluorescence, 
charge transfer and recombination, among others. Nuclear processes include 
inelastic nuclear excitation, nuclear de-excitation and elastic scattering. 

A commonly occurring and important type of collision in a plasma is charged 
particle scattering attributable to the mutual electrostatic force. Such Coulomb 
scattering can vary from the most frequently occurring small-angle "glancing" 
encounters due to long-range interactions, up to the least likely near "head-on" 
collisions. The Coulomb scattering probability for ions is much larger than that to 
undergo fusion. Note that the deflections encountered in scattering reactions may 
lead to significant bremsstrahlung radiation power losses which lower the plasma 
temperature. 

In general, the complete analysis of charged particle scattering is physically 
complex and mathematically tedious. As a consequence, we chose here to employ 
selected reductions in order to convey some of the essential and dominant 
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3.2 Differential Cross Section 

Consider an isolated system of two ions of charge qa and qb, and possessing 
corresponding masses lIla and fib. The magnitude of the Coulomb force is given 
by 

1 
Fe== (3.1)

4rc Eo 

where r is the distance of separation at any instant; evidently, as the charges 
move, this distance and also the direction of the force varies with time. The 
resultant trajectory of the particles a and b is suggested in Fig.3.1 for charged 
particle repulsion and attraction. In order to clearly specify a cross section for 
this process, it is useful to introduce the impact parameter ro and the scattering 
angle es with respect to the initial and final asymptotic particle trajectories. In 
Fig. 3.1 the two colliding particles are shown in antiparallel motion because such 
a simplified situation always applies if the collision is analyzed in the centre of 
mass reference frame. Thus, the deflection angle e s here indicated is identical to 
the scattering angle in the centre of mass system ee, which is associated with the 
directional change of the relative velocity Vn to be subsequently introduced. 
Intuition based on physical grounds suggests a rigid relationship between the 
three parameters ro, ec and Yr. 

For the case of azimuthally symmetric scattering, Fig. 3.2, and which here 
applies because of the specific form of Fe, every ion of mass fib and charge qb 
moving through the ring of area 

dA == 2rc rodro (3.2) 

e
will scatter off particle a-which has a charge of the same sign-through an angle 

c into the conical solid angle element dQ* associated with the shadowed ring of 
Fig. 3.2; this conical solid angle element is evidently 

dO.' == 2rcsin( ec)dec . (3.3) 
The number of ions which scatter into a solid angle element can change 

substantially with ro and vr ; it is therefore necessary to look for an angle 
dependent cross section a(Q) which here, due to azimuthal symmetry, is only a 
function of e c and yields a total scattering cross section as according to 

4n- n

fa s ( e,)d 2 o. = faiec)do.*as = (3.4) 
o 0 

implying the relation 
das 

aiec)= dO.' . (3.5) 

That is, as(ec) is a function of the conical solid angle Q* corresponding to a 
specified e c and possesses units of barns per steradian (b/sr). Since das represents 
the differential cross sectional target 'area dA of Fig.3.2, and all ions entering this 

Charged Particle Scattering 

area will depart through the solid angle element dQ*, we may write 
(3.6)N2rc rodro Nas(eJdo.* 

which, upon insertion of with N denoting a particle number per unit area, 
Eq.(3.3) yields specifically 

(3.7)a (e )=_ro_\dro\ 
S c sine ee) dee 

where 0 S e S 1t. Here, the standard absolute-value notation for the Jacobian of a 
c 

transformation has been incorporated. The process discussed above refers to the 
so-called Rutherford scattering and as(ec) is known as the corresponding 

differential scattering cross section. 

Case of Repulsion 

Particle 
Trajectory 

\ 

a rna' qa 

/, 

Case of Attraction 

ro 

rna,qa 

Fig. 3.1: Trajectories of ions "b" and"a" in the centre of mass reference frame under the 
influence of Coulomb repulsion and attraction. 
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d.Q* 

Area dA 

qb' mb '0 

Azimuthal 
SymmetryVr 

Fig. 3.2: Depiction of an ion b, moving within an area dA with speed Vr towards another 

ion a and being scattered into the solid angle d.Q*. 

The functional relationship between the impact parameter ro and the polar 
angle of scattering ec needs to be determined before Eq.(3.7) can be specified. 

The precise relationship between the impact parameter, the scattering angle, 
and the relative ion speed requires a detailed examination of the kinetics of the 
process together with the specification of energy and momentum conservation. 
These considerations and associated algebraic procedures are very cumbersome 
and will not be undertaken here. Suffice it to summarize that for the general case 
of arbitrary motion of two charged particles, the important relations can be 
compactly stated as 

tan( ~c)= (3.8) 

where the parameters introduced are as follows: 


e c = scattering angle for particle b off of particle a in the COM (Centre of 

system which relates to eL in the LAB (Laboratory) system according to 


cot( BL)= 	mb csc( Bc)+ cot( Be); 
rna 

mr =reduced mass of the two body system 
== (rna mb ) / (rna + mb ) ; 

vr == relatIve speed of the two particles of interest 
Va - Vb I . 

The meaning of the impact parameter ro is unchanged. 
Equation (3.8) provides a useful connection between the Impact parameter r ,

o
the scattering angle ee in the COM system, and the relative particle speed v • For 

r 

Charged Particle Scattering j:> 

we may write 

tan(Bc) =K, 
2 ro K qaqb 

4n: eomr v; 
(3.10) 

with K thus a parameter of the charge, mass, and the kinetic state of the two 
collision partners. To complete Eq. (3.7), we recall our previous comment on the 
geometry-of-collision of interest, Fig. 3.1, which allows the scattering angle e s 

introduced therein to be interchanged with ee, and use (3.10) to determine 
drcldec for K as a constant and thereby obtain the differential scattering cross 
section in the COM reference frame. That is, we get 

K 	 (3.11) 

and hence 

r~ sec2(Bc) 	 (3.12)
= 2K 2 

Then, substitution of this expression in Eq.(3.7) gives 

oA Be) =(_._r_o_)(r~ sec2 
( Be 12)) . 

sm( Be) 2K (3.13) 
Now using Eq.(3.1O) to eliminate the impact parameter ro and employing the 
general half-angle identity 

sin(B)= 2co{%}in(%) 
(3.14) 

yields, upon algebraic simplification, the final expression of relevance: 
2 

oABe)= =i qaqb ~ 
12) 4 ( 4n: eomr V; ) sin (BJ 2) (3.15) 

This algebraic form is frequently called the Rutherford scattering cross 
section. 

The more significant information about this charged particle interaction cross 
section is suggested in 3.3 and illustrates the following important result: the 
cross section approaches O's(ec) -7 K2/4 for "head-on" collisions (i.e. ro -70) and 
becomes arbitrarily large for increasingly smaller "glancing" angles (i.e. ro -7 00). 

An informative conclusion about the singularity as ec -7 0 is that, for 
example, if there were to exist only two non stationary charged particles in the 
universe then some deflection would occur with certainty regardless of how far 
apart they were; that is, the Coulomb 1Ir2 force dependence may become 
infinitesimally small at sufficient separations but, in principle, it never vanishes. 
Identifying a "reasonable" length beyond which charge effects can be considered 
to be unimportant, or even be ignored, is provided by the Debye length concept to 
be discussed next. 

http:Eq.(3.1O
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Fig. 3.3: Depiction of the Rutherford cross section as a function of scattering angle. Note 

(J's(Be) ~ 00 as Be ~ o. 

3.3 Debye Length 

Though a plasma is globally neutral, it may well acquire local charge variations 
which establish an electric potential and give rise to an electric field , The 
thermal motion of ions and electrons will therefore be influenced by the 
consequent force effects. An indication of the spatial extent of such an effect is 
represented by the Debye length. The following analysis yields a useful explicit 
expression for this important parameter. 

Consider a dominant positive charge or electrode inserted in a plasma, Fig. 
3.4. Due to the mobility of electrons, a negatively charged cloud will immediately 
form around this point with its density decreasing with distance. Similarly, a 
negative charge will also create a positive ion cloud spherically symmetric about 
it. Obviously, a plasma tends to shield itself from applied electric fields; that is, if 
an electrode is inserted into a plasma it will affect only its immediate 
surroundings. If the plasma were cold, one would observe as many charges in the 
surrounding cloud as are required to neutralize the inserted charge, Fig. 3.4. 
However, due to the finite plasma temperature, the plasma particles possess a 
substantial kinetic energy of thermal motion so that some-particularly those at 
the edge of the cloud-will escape from the shielding cloud by surmounting the 
electrostatic potential well which, as is known, decreases with increased distance 
r. 

Evidently, we need to determine some characteristic shielding range and 
consider for that-over a small distance r from an inserted charge-some little 

:;/
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perturbation of the electric charge density in the plasma. Beyond this range, a 
unifonn neutral plasma continues to reside. The local electric field E thus 
established is related to the local charge density pC by Maxwell's First Equation 

V.E=pc. 	 (3.16) 
eo 

With this conservative field, a scalar potential function <I> is identified and 

related to the electric field by 
E=-V<1>. (3.17) 

By substitution in Eq.(3.16) and specializing for the case of interest, Fig. 3.4., 

Poisson's Equation takes on the form 

V.(-V<1»= 	 (3.18) 
eo 

which, upon introducing the definition 
(3.19)pC 	 "LqjN j , 

j=e,i 
is written for a plasma containing only one species of ions as 

_ V2<1> qeNe + qiNi =~(Ne - N
i 

) (3.20) 
eo eo 

in which qi and qe are the ion and electron charge, and Ni and Ne are the local ion 
and electron densities, respectively. Determining the potential function <I> 
requires a knowledge of Ni and Ne as functions of position or of <1>. 

7777/ 

Fig. 3.4: Local charge variation in a plasma upon insertion of two dominant point charges. 

The particle densities Nj, however, at thennodynarnic equilibrium and in the 
presence of a potential energy <I> are known to depend upon <1>, the specific 
charge and the equilibrium temperature Tj according to the Boltzmann relation 

-q <1»N e =Cexp 	_e_ (3.21a)
( kTe 

with the factors Cj being determined from the evident affinity <I>~O as r~oo to 
represent the undisturbed background densities Nj(r~oo). Equation (3.21a) may 
then be expanded by a Taylor series to give 

http:Eq.(3.16
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+ Iqel4> + ~[I qel4>J2Nez (3.21b)
kTe 2 kTe 

This refers to the region where I evcI> I kTj 1« 1, which is actually the dominant 
contributor to the thickness of the shielding cloud. Retaining only the linear 
terms of the expansion and substituting into Eq. (3.20) yields 

- V2 4> Z ~[N[l + IqeJ4>J -N] = (3.22)
Eo kTe 

where we have used the charge-neutrality boundary condition 


qeNe (r ~ 00) + qiNi (r --7 00) = O. 

(3.23) 

The defining equation for the electrical potential function cI>, Eq. (3.22), is 
evidently of the form 

V 2 4> -~=O (3.24)Ai> 
with AD defined as the Debye 

AD= (3.25). N 

Denoting the length for shielding ions electrons by 

ADe= (3.26a) 

and for screening electrons by ions 
....------

EokTiAm (3.26b)l Ni(r~oo) 
we realize the relation 

+~ . (3.27) 

Taking Te Ti = T and assuming the presence of singly-charged ions only, 
that is Nj (r--7oo) = Ne(r--7oo) = NI2, notably simplifies Eq. (3.25) to the 
expression 

AD= (3.28a) 

The important dependence is therefore 

AD ex: (3.28b) 

with typical values of interest to thermonuclear fusion being in the range of about 

Charged Particle Scattering 

111m to 1 mm. 
The role of AD may be interpreted as a "shielding length" parameter for a 

plasma and becomes evident by solving Eq.(3.22) for the boundary conditions 
4>(r=O)=4>o and 4>(r~co)=O. (3.29) 

For the case of spherical geometry one obtains for the potential function in a 
plasma 

(3.30a) 
r 

which may be compared to the free-space potential given by 
1 

4> free space ex: - • (3.30b) 
r 

Thus, the potential cI> associated with the imposed electrostatic perturbation is 
attenuated in a plasma according to the magnitude of AD and is commonly said to 
be shielded to the distance of the Debye length. 

This AD parameter is thus a useful concept and application of it relates to the 
elimination of the cross section singularity of Sec.3.2 as we will show next. 

3.4 Scattering Limit 

The singularity of the Coulomb scattering cross section, for 8c --7 0, Eq.(3.15), 
becomes particularly apparent in the evaluation of the total Coulomb scattering 
cross section. That is, substitution ofEq.(3.15) into Eq.(3.4) gives 

TC ( K2 ) . JTC cos( ()c I 2)as = 2n sm( ()c)d()c = n d()c' (3.31) 
J8 =0 4sin4(()c I2) 8c=osin3(()cI 2)c

To avoid the singularity as 8c --7 0, consider a finite non-zero lower bound 8miD 

and write 

() 
2 

(3.32) 

=1r 

Note in this context that it is the collisions with small deflections which are 
responsible for the total Coulomb scattering cross section <J"s becoming very 
large. 

A number of physical considerations suggest that 8min should be chosen in 
accordance with a maximum impact parameter beyond which Coulomb scattering 
is relatively small. In a vacuum, the Coulomb field from a dominant isolated 
charge extends to infinity. implying therefore a scattering: "deflection" interaction 

http:ofEq.(3.15
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at any arbitrary impact parameter. In a plasma, however, the target charge would 
be surrounded by a particle cloud of opposite charge. The fields due to 
surrounding particles will effectively "screen-out" the Coulomb field of an 
arbitrary charge at some maximum impact parameter distance which corresponds 
to some minimum scattering angle. This distance may be specified as the radius 
of an imaginary sphere surrounding a target ion such that the plasma electrons 
will reduce the target ion's Coulombic field by lie at the sphere's surface. The 
Debye length, A.D as defined by Eq.(3.23a), evidently corresponds to this distance 
and we take the maximum impact parameter as 

ro.max A.D' 
(3.33) 

Thus, ami" follows from the inversion of Eq.(3.1O): 

emin =2 tan-I (~) . (3.34) 

Figure 3.5 displays the Coulomb scattering cross section for the case of dot 
interactions and for comparison also shows the fusion cross section; as suggested 
previously, it is evident that Coulomb scattering events occur orders of 
magnitude more frequently than fusion reactions. 
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Fig. 3.5: Scattering cross section and fusion cross section for deuterium incident On a 
tritinm br",..t 
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3.5 Bremsstrahlung Radiation 

An important consequence of scattering in fusion plasmas is bremsstrahlung 
radiation, which refers to the process of radiation emission when a charged 
particle accelerates or decelerates. It involves the transformation of some particle 
kinetic energy into radiation energy which-due to its relatively high frequency 
(X-ray wavelength range of - 10-9 m)-may readily escape from a plasma; thus, 
the kinetic energy of plasma particles is reduced, plasma cooling occurs, and a 
compensating energy supply may be required in order to maintain the desired 
plasma temperature. 

A rigorous derivation of bremsstrahlung power emission in a hot plasma 
involves considerations of quantum mechanics and relativistic effects and is both 
tedious and time consuming. Indeed, even advanced methods of analysis require 
the imposition of simplifying assumptions if the formulation is to be at all 
tractable. It is, however, less difficult to develop an approximation of the 
dominant effect of the bremsstrahlung processes by the following considerations. 
A particle of charge qe and moving with a time varying velocity vet) will
according to classical electromagnetic theory in the nonrelativistic limit-emit 
radiation at a power 

pex: 
dt (3.35) 

In Fig. 3.6, we suggest this process for an electron moving in the electrostatic 
field of a heavy ion. To estimate the energy radiated per encounter, we replace 

Idv/dtl in Eq.(3.35) by an average acceleration a to be calculated from Newton's 

Law, a = Fe I m, with Fe representing the magnitUde of the average Coulomb 

force approximated here by the electrostatic force between the two interacting 
particles when separated by the impact parameter roo That is, we take 

\ Z 2 qe
a"'-' --- (3.36) 

m 4rc £or~m 
for the average acceleration experienced by a particle of mass m and charge qe in 
the field of a charge qi =-Zqe. Since an electron possesses a mass 111836 of that 
of a proton-with an even smaller ratio existing when compared to a deuteron or 
triton-the electrons in a plasma will therefore be the main contributors to 
bremsstrahlung radiation. We suggest this in Fig. 3.7 for a representative electron 
trajectory undergoing significant directional changes in a background of sluggish 
ions. 

Imagining an electron (ffie, qe) to be in the vicinity of an ion (mit = IZqel) 
for a time interval 

/). to ro (3.37) 
Vr 

http:Eq.(3.35
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with v r denoting the average relative speed between the electron and ion, we 

combine Eqs.(3.35) to (3.37) to assess the bremsstrahlung radiation energy per 
collision event as 

P!l.to (3.38)
collision 

Note this expression refers to the collision of a single electron with an ion at the 
specific impact parameter roo Extending these considerations to a bulk of 
electrons of density Ne all approaching the ion with Vr , then the number of 

electrons colliding per unit time with the same ion at the same impact parameter 
ro is given by 

dRo - 2 -. - "" N e Vr n r0 dr0 • (3.39) 
IOn 

Multiplying this relation by the ion density Ni we obtain the differential electron
ion collision rate density 

dRo"" N e Ni Vr2n rodro (3.40) 

thereby accounting for all electron-ion interactions per unit volume and per unit 
time occurring about a specific impact parameter roo 
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Fig. 3.6: Depiction of photon emission from an accelerated electron passing near an ion. 

Next, in order to obtain the total bremsstrahlung radiation power density 
associated with the entire electron-ion force impact area, (3.38) needs to be 
multiplied by Eq.(3.40) and integrated over the range of the impact parameter 
ro,min to ro,max; that is we now obtain for the bremsstrahlung power the 
proportionality 

Charged Particle Scattering 

Z2 q~ rO'Jma:< dr0 (3.41)Pbr ex: Ni N e--2- --2' 
me ro 

TO.min 

While ro,max = 00 can be imposed, a finite minimum impact parameter needs to be 
specified due to the integral singularity for ro -7 O. We choose to identify ro.min 
with the DeBroglie wavelength of an electron, that is, 

h (3.42)ro.min 
meve 

where h is Planck's constant and Ve represents the average thermal electron 

speed defined by Eq.(2.l9b): 

(3.43)-=lkT. 
Ve men 

Bremsstrahlung 
Radiation 

Fig. 3.7: Schematic depiction of an electron trajectory and bremsstrahlung radiation. 

With the integration limits thus specified, the integral of Eq.(3.41) is readily 
evaluated so that the electron bremsstrahlung radiation power density is found to 
exhibit the following dominant dependencies: 

Pbr =Abr Ni NeZ2 /kT (3.44) 
where A

br 
is a constant of proportionality. For kT in units of e V and particle 

densities in units of m·3
, 3J )Abr"" 1.6 x 10 -38( FeVsm (3.45) 

which yields Pbr in units of W·m,3. An important point to note here is that Pbr is 

proportional to (kT)1I2. 

http:Eq.(3.41
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3.1 Examine the relationship between Be and BL for the limiting cases of 
mt/ma = to, 1,00}. 

, "" 3.2\ For a typical case of d-t interaction at 5 ke V, plot as(Bc), 0 S Be S 1t. 

3.3 For the conditions in problem 3.2, calculate as assuming a background 
particle density of 1020 m-3

• 

Calculate the bremsstrahlung power increase if a d-t plasma were to 
contain totally stripped oxygen ions at a concentration of 1% of the electron 
density. 

(~ Calculate the ratio of bremsstrahlung power to fusion power for a d-t 
1020 3plasma with Ni == Ne == m- at 2 keV and 20 ke V. 

:/3.6\ Determine from a plot of power density versus kinetic temperature (use a 
'ao~ble logarithmic scale) for a 50:50% D-T fusion plasma 

(a) the so called ideal d-t ignition temperature T*, Le. the temperature at 
which the plasma fusion power density equals the loss power density due to 
bremsstrahlung. 

(b) the temperature T*;gn more relevant to fusion ignition since it refers to the 
plasma operational state where the bremsstrahlung loss power is balanced by the 
energy transfer from the fusion alphas to the background plasma per unit time by 
Coulomb collisions. Assuming that the charged particle fusion power is entirely 
transferred, T*ign is found from 

Pdl (T~gll) == Pbr (T~gll) 
with fc•dt representing the fraction of d-t fusion power allocated to charged 
particles (in this case a's). What does this condition mean for the overall power 
balance of the fusion plasma if other heat losses were neglected? 

3.7 A fusion reactor using two opposing accelerators is proposed, where a 30 
keY tritium beam from one is aimed head on at a 30 keY deuterium beam from 
the other. Would this work, and can you suggest improvements? What would you 
estimate is the maximum energy gain possible with this system (see Ch. 8)? 
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