Chapter 13 .

PLASMA STABILITY THEORY *

INTRODUCTION

STABLE AND UNSTABLE EQUILIBRIA

13.1. Nearly all the proposals for confining plasmas at }.1'1gh temperatures,
with a view to the realization of thermonuclear reactions, involve the usg.of
magnetic fields in one form or another. Hence, t}'le problem of the stablhty
of the plasma in a magnetic field is of paramount 1mport'ancela. Early experi-
mental and theoretical work showed that the plasmas in simple pinch and
stellarator systems were basically unstable. Consequent.l}‘r, eifforts have been
made toward the development of a theory of plasma stability in the bope t}}at
the instabilities might be understood and methods developed for eliminating
them or at least inhibiting their rate of growth. )

13.2. Since the whole field of plasma confinement, and particularly of sta-
bility during confinement, is relatively new, and since there are undoubtedly
several fundamentally different types of instability, no really satisfactory the-
ory of plasma stability exists at the present time. Some }')rogress has beep
made in connection with hydromagnetic instabilities, in which th.e plasma is
treated as a simple hydrodynamic fluid interacting with a magnetic field, a,ndv
a few significant conclusions capable of experimental tes't have been reacl}ed.
However, it must be admitted that, except for one special case, ’f,he require-
ments for the stabilization of a plasma under conditions of pra:ctlcal. interest
have not yet been elucidated. Because the sta,bility. problen{ is basic to all
aspects of research in controlled thermonuclear reactions, various me?thods -of
solving it which have been tried will be outlined and .thelr llmltafalons. dis-
cussed. Although the treatments are highly mathematical, emphasis will be
placed as far as possible on their physical signiﬁcance:.' .

13.3. In an unperturbed plasma in a state of equilibrium and at rest, the
isotropic (scalar) pressure balance equation is

1,.
Vp = ;(] X B),

* Based on a draft prepared by Bergen R. Suydam.
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which has three components corresponding to the three directions of the vectors.
However, these three component equations relate four functions, namely, the
pressure and the three components of the magnetic field. Consequently, equi-
librium can be realized, in principle, with a wide variety of magnetic fields.
The condition required is that ¥ X (B X ¥V X B) =0; for such fields, and
only for such, is confinement of a scalar pressure possible. The. central prob-
lem of plasma confinement is to determine which of the equilibria, of the many
possible, are stable. In a stable system, a small perturbation will lead to an
oscillation about the equilibrium state, but if the system is unstable, the per-
turbation will grow indefinitely. It will be seen that the treatment of the
stability of a plasma confined by a magnetic field has many features in com-
mon with that of wave propagation. The question that will be asked is: Do
perturbations remain at the same level or do they continue to grow?

13.4. Before discussing the various approaches to the subject of hydromag-
netic plasma stability, it should again be emphasized that no really satisfactory
theory has yet been developed. The present chapter should therefore be re-
garded as being in ‘the nature of a progress report rather than a definitive ac-
count; it is included in this book because of the essential importance of the
problem with which it is concerned.

SIMPLE EQUILIBRIUM SYSTEMS

13.5. A simple situation, for which it appears that an unequivocal solution
to the stability problem is possible, may. be treated in the following manner.
Consider a portion of plasma having a uniform kinetic pressure p,. The
plasma is assumed to be perfectly diamagnetic, so that it contains no internal
magnetic field. Suppose this plasma is confined by an external field, the value

of which is By at the surface of the plasma. The condition of equilibrium is
then

Po=g’

so that the (uniform) pressure of the plasma is exactly balanced by the mag-
netic pressure of the confining field.

13.6. In order to determine whether this equilibrium is stable or not, imagine
the surface of the plasma to be disturbed slightly by forming a wave (or “flute’’)
with its crest and trough running parallel to the magnetic field lines. If the
trough and crest have the proper dimensions, there will be no change in the
volume of the plasma and hence no change in the pressure. Suppose, in the
first place, that the confining field lines are curved so that they are concave
toward the plasma. This is represented in Fig. 13.1A, where I shows the side
view and II the end view, in which the wavelike disturbance is indicated. It
follows from Maxwell’s equation ¥ X B = 0 that the magnetic field strength
will diminish with increasing distance from the center of curvature of the field
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lines. Consequently, in the case under consideration, the magnetic field on the
crest of the wave is such that B2 < B2, whereas in the trough B2 > B¢2. As 3
result, a net force acts in such a sense as to heighten the crest and deepen the
trough, that is to say, the disturbance will tend to grow in amplitude. It fol-
lows, therefore, that the particular equilibrium is unstable. On the other
hand, if the magnetic field lines are convex toward the plasma, as represented
in Fig. 13.1B, the net magnetic force is such as to depress the crest and raise the
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Fic. 13.1. Unstable and stable magnetic field-plasma configurations.

trough of the disturbance under consideration. In other words, the force acts
in such a manner as to counteract the disturbance and the equilibrium is stable.
13.7. The foregoing discussion suggests and rigorous analysis (see Appendix
A) confirms that a perfectly diamagnetic plasma, i.e., one with no internal mag-
netic field, is stable or not according to the curvature of the lines of the con-
fining field at its surface [1-3]. If every such line is everywhere convex to-
ward the plasma or, in other words, if the center of curvature of the magnetic
lines on the plasma-field interface always lies in the direction away from the
plasma, then the system is stable. On the other hand, if the lines are anywhere
concave toward the plasma, so that the center of curvature is withjn (or to-
ward) the plasma, then the system must be unstable. Thus, a pinched dis-
charge consisting of a very thin sheath of essentially infinite conductivity, with
no trapped axial field, will be fundamentally unstable.

13.8. In order for a completely diamagnetic plasma to be stable when con-
fined by a magnetic field, it cannot form a convex body, but must have cusps.
A number of different configurations satisfying this requirement, some of which
are being studied experimentally, were described in §11.22 et seq.

HYDROMAGNETIC THEORY

NORMAL MODE ANALYSIS

13.9. The foregoing discussion has been essentially qualitative in nature
and has dealt with the restricted situation of a perfectly diamagnetic plasma.
For practical purposes, information is required concerning the rate of growth
of various instabilities that might develop and also on how the growth may
be inhibited. Furthermore, in many cases of interest, there is a magnetic
field inside as well as outside the plasma; the situation is then more realistic,
but also more complicated, than that considered above.

The displacement of
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follows:

Conservation of Mass

dp
) di +ov-v =0, (13.1)
where d/dt represents the hydrodynamic operator, i.e

) SNy

d
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v being the vector velocity of the plasma and ¢ the time. Equation (13.1)
is also known as the equation of continuity.

Conservation of Momentum

dv

Pt

where d/dt is the hydrodynamic operator, and j and B are, as before, the

current density and magnetic field vectors. Equation (13.2), which neglects

the effect of gravity and of the electric field, since the latter is assumed to be

gero, is sometimes known as the force (or motion) equation (cf. §4.116).

1t describes the motion of the plasma under the combined action of a pressure
gradient and a magnetic body foree.

— —vp+:GXB), 32

Conser’vation Of E“'ergy
__t 4 ’YP(V'V) = 0’ (1 . )

where d/dt is the hydrodynamic operator defined above and y is the ratio of
the specific heats, which may generally be taken as the monatomic gas value,
ie., 5/3, for a plasma. This equation implies adiabatic behavior, as may be

seen by combining it with equation (13.1) to give

1 dp

. v dp
p di p

dt
and integrating; the result is
p= constant X p7,
which is the familiar adiabatic law for a gas.
13.13. In addition to the three hydrodynamic equations given above, there
are the Maxwell equations. As the plasma is assumed to be perfectly con-

ducting, an observer moving with the local velocity of the plasma would

experience no electric field; hence,
E + lc (vXB)=0.

When this is set into Maxwell’s equation

1 6B
VXE="0"%
there is obtained
B
Y v X (v X B) (13.4)

as the equation of motion of the magnetic field. Physically, this result im-

plies that the plasma and the magpetic field move together.
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13.14. Use will also be made of the M i i i
displaseinent, cwrent, oL, §311) e Maxwell relationship, neglecting the

4r .
VXB= = ¥ (13.5)
which is essentially a definition of the current density. Finally, the particles

move in such a way that the charge density ¢ is given by
V-E = 479,
and the divergence of the magnetic field is zero, i.e.,
v-B = 0.

iZeld:"i.tl)s.thCor;sitder an equilibrium system at rest, so that v =0, character-
.y e state variables po, po, and By. These variabl :
equation (13.2) which now tak’es t’he form0 rE connected by

1
0=—Vp +C_(]0XBD)-

Suppose that the state of equilibrium is perturbed by a very small amount
so that the pressure becomes po + p’, the magnetic field becomes By + B’,
afld 50 on. Tl_me system will now have a small velocity v, and the qua,ontities,
2 B’, and v will develop with time in accordance with the equations of motion
given above. It is essential that the perturbations p’, B’, etc., are considered
to be s1r.1a.11, 8o that their products, both with themselx,/es :amd ;vith each other
are negligible. In this way, it is possible to achieve linear equations of motioni

13.16. Tt is i . . :
defimed by convenient to introduce a displacement variable vector &

at
so that equation (13.4) leads to

9B’ _ of |
7 —Yx(gxso) \

d
Bev o EEfvdt,

which, upon integration, yields
B’ = Vv X (£ X By). (13.6)

‘1.3.17. Wri?,ing Do +.p’ for p in equation (13.3) and introducing the defi-
nition of &, this expression takes the linearized form

' | (9
ot + (&) - Vpo + YpoV - (g—f) =0

and integration then gives

'

P = —vpV-E — £ Vpo. 13.7)
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From equation (13.2), with j equal to jo + i/, it follows that

% , 1T . ;
POT-,)E: —Vp +E G XB0)+(]OXB) .
Upon substituting equations (13.6) and (13.7) for B’ and 7/, respectively,
and utilizing equation (13.5), there results

0%E
b0 55 = VYDV £ + £ V0]

_,_%r[vxvx(ngo)XBoJrVXB"xvx(EXBM’ (13.8)

where po, Do, and By are determined by the initial equilibrium distribution.

13.18. Because equation (13.8) is linear in the unknown vector function
&, it can, without loss of generality, be simplified by analyzing it into its
Fourier components. Thus, assuming the time dependence to be of the form

£(x, t) = £(%) exp (1),
where x represents the space coordinate vector, equation (13.8) becomes

— o2 = V[PV £ + E-VP0] + :117, [(v X Q) X By + (v X By) X Q], (13.9)

where Q is defined by == F

Q =V X (£ X By).

It should be noted that the & in equation (13.9) and subsequently is really
the spatial component &(x), as is apparent from the presence of 02 on the
left side of the equation. The argument (x) is omitted here to simplify the
representation. Equation (13.9), called the normal mode equation, com-
bined with the boundary conditions on &, namely, (a) & is finite everywhere,
and (b) the normal component of & vanishes on any metallic conductors
present, e.g., magnetic field coils or external conductor, forms an eigenvalue
problem for the determination of Q2. If every eigenvalue is positive, then
every mode is periodic in time and is a simple (traveling or standing) wave.
I, on the other hand, one of the eigenvalues of Q? is negative, then one of
the two associated modes grows exponentially with time and the system is
unstable.

13.19. The normal mode equation (13.9) is analogous to that used in the
study of acoustical waves and is identical with that which is applicable to
Alfvén (plane) waves in a plasma having a finite pressure. When the mag-

netic field is uniform, a further Fourier analysis, with respect to the space
variable x, is possible; thus, & may be taken to be of the form
E= (& b, &) exp (k-x + ),

and then equation (13.9) reduces to a system of linear algebraic equations
which determine the so-called dispersion relationship between Q% and k. In

(13.10)

———
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plified by taking p to be ¢
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VARIATIONAL METHOD

13.20. A i
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@ [oe0ds = [ereas,

where F represents the negative of the co
&) on the right side of equation (13.9)
vanishes on the boundary ifi
of equation (13.11) ’

(13.11)

mplicated differential operator (on

e o .tBecause the normal component of '3

L.e., at Infinity or at a conductor, the right si

can be simplified by partial integration; th’us Bt side
)

sW
[ oe-) a2

12—
@ — (13.12)

where §W is defined by
oW = [ £-FE di

- L0
. f[4,,(QQ VXB'QXE)+7P(V-E)2+(V'E)(E-Vp)]d%. (13.13)

13.21. Th
fist o Véc(zocr)p;alll'itccg F can b,e shown to be self-adjoint, and so it follows
i Ml ion E which makes equation (13.12) stationary is an
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merator, i.e., 8W. Thus, the normal mode stability cond?tig;1

can be i i
replaced by the following variational principle: the necessary and

suffici iti W Vi
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y n

(13.13), b i “whi
13.2;. %‘ }r::tv:e.gaj;t'lve for every & which satisfies the boundary conditions
intsle: fan o t‘I;la lonal prmm'ple developed above is also called an ener :
i rns out, as might have been expected, that 8W is equal gﬁ)’
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the change in potential energy of the system resulting from the displacement fined to an extremely thin sheath Y 493
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APPLICATIONS OF STABILITY THEORY

STABILITY OF THE PINCHED DISCHARGE

13.24. An important application of stability theory has been in the study
of the straight cylindrical pinched discharge [5]. Here the simple nature
of the geometry permits some generality in the consideration of pressure dis-
tributions. In the earliest models, the plasma was treated as a cylindrical rod 1 UNSTABLE
in which the current was confined to an infinitely thin layer at the surface '
(cf. §7.35). As Vpo and jo vanish, the normal mode equation (13.9) then
reduces to the simpler form

— % = VoV ) — 7= [Bo X (¥ X Q)] (13.14)

The spatial component of the displacement variable vector & or, in fact, of
any perturbation represented by the primed quantities given above, may be
written in the form of equation (13.10), so that for cylindrical geometry
= £(r) exp (tmb + tkz), (13.15)
where m is an integer, assumed to be positive, and k 1s real. As seen in
§7.34, the value of m determines the nature of the plasma perturbation, thus,
m = 0 represents a necking-off, m =1 is a kink or spiral, etc. The wave
length of the perturbation is equal to 2x/|k|.  If equation (13.15) is substi-
tuted into equation (13.14), there is obtained a set of three coupled, differential
equations in the three space coordinates. Upon applying the boundary con-
ditions appropriate to the problem, namely, that (a) the magnetic field is
tangent to the plasma-field interface and (b) the total pressure p + B2/8x
is continuous across the interface, the required dispersion relation can be found.
From this the condition for stability, i.e., 02 is always positive, is derived.
Except for the simplest cases, the actual determination of which configurations
are stable and which are not, for different values of m, involves laborious
numerical calculations. ' B
13.25. The first application of the normal mode analysis to a pinched ] Fie. 132
discharge was made for a cylindrical plasma in which the current was con-

0.5
1.5

Conditions of stabi;
ability to m =0 _ )
pinched discharge, nd m =1 perturbations in
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above remains unchanged, but an analysis now indicates that stability is not
possible if there is an axial magnetic field outside the plasma in the same
direction as the field within the plasma. It appears that, when the current
layer is thin but finite, an axial field in the vacuum outside the plasma is
required for stability but it must be in a sense opposite to that inside the
plasma. However, the reversed field alone is not sufficient for stability, since
a special surface distribution is required in addition-[12].

13.30. In the case of very thick current layers, it is a relatively simple
matter to utilize the variational principle to derive a necessary, although not
sufficient, condition for stability which relates the pressure gradient in the
plasma to the torsion of the magnetic field lines [13]. The general conclusion
was given in §7.97, and will be repeated here for completeness. The lines of

the combined axial and azimuthal fields form spirals and their pitch, p, may
be defined by

k=B,
where r is the radius of the pinched discharge; the quantity (1/u) (9u/0r)

measures the torsion (or “shear’”) of the field lines. The necessary stability
condition alluded to above is then

rf{l du\*  8r (dp

Ao ARSI ED
As seen in §7.99, one possible way of realizing this condition is to apply an
axial magnetic field outside the plasma in a direction opposite to that of the
field within the plasma. '

13.31. It may be mentioned that stability conditions for the pinched dis-
charge, which are both necessary and sufficient, have been derived [5, 14, 15].
However, these involve complex mathematical expressions and their applica-
tion requires lengthy calculations. It would appear to be almost as simple

to perform the variational problem directly for each case with the aid of a
computing machine.

STABILITY IN STELLARATOR SYSTEMS

13.32. As indicated in Chapter 8, some use of hydromagnetic stability
theory has been made in connection with stellarator systems, particularly
of the kink (m = 1) and interchange instabilities. The situation in the stel-
larator differs from that of the pinched discharge in the respect that there is
essentially only one type of magnetic field, namely the axial field, in the
former case and this is largely within the plasma. Any azimuthal field that
arises from current passing through the plasma, e.g., for ohmic heating, is
negligible. .

13.33. The normal mode treatment has been applied to the situation while
the plasma is being heated ohmically [16]. It has been found that, in a stel-
larator in which the rotational transform arises from the large-scale geometry
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of the tube rather than from small local perturbations of the magnetic field
produced by helical windings, the m = 1 mode is the only one which can cause
serious instability. This occurs when the rotational transform due to the
longitudinal current just compensates for that caused by the geometry of the
stellarator tube. The theoretical treatment indicates that, in this case, the
effect of an external conductor is negligible, although such a conductor tends
to suppress the kink instability in a pinched discharge (§7.27).

13.34. By means of the variational principle, it has been shown that, when
the rotational transform arises from the geometry of the stellarator, as con-
gidered above, the plasma is always subject to the interchange (or flute) in-
stability. Utilizing the same procedure it has been found, however, that this
can be stabilized by means of a transverse, helical magnetic field, which can
itself produce a rotational transform, as explained in Chapter 8 [17].
Consider a plasma with an axial magnetic field inside it; this field must be
so disposed that any conceivable displacement requires work to be done. The
plasma may be visualized as a set of “onionskin” layers, each layer being a
surface made up of magnetic field lines. If now the field lines are given tor-
sion (or shear), that is, if the directions of the lines are always different in
~ adjacent layers, then no displacement of the plasma will be possible which
does not bend the lines. Even if there is a wavelike displacement in which
the crests and troughs are aligned with the magnetic field in one particular
layer, the torsion of the field line will spoil the alignment in neighboring
layers. In such a system work must be done on the magnetic field for any.
conceivable displacement, and stability will be determined by whether the
heat energy of the plasma can supply this work or not. .

13.35. With the aid of the variational (or energy) principle it has been
found that torsion of the magnetic field lines, such as would be produced by
means of a transverse, helical field, as described in §8.19, has a stabilizing
effect. The system is stable against interchange so long as the heat energy
available is not too large or, in other words, provided the plasma pressure is
small. These limiting pressures appear to be so low as to require g8 values
of the order of 0.01. Furthermore, provided the rotational transform angle
produced by the helical field is greater than and has the same sign as that
caused by the ohmic heating current, it is expected that the plasma will be
stable to perturbations of all m values. ’

COLLISIONLESS (NONEQUILIBRIUM) THEORIES

THE BOLTZMANN EQUATION
13.36. Although the hydromagnetic model of a plasma, based on the
hydrodynamie equations (13.1), and (13.2), and (13.3), has been treated at
some length, it is not because it is by any means a final or definitive theory.
It is rather because it has led to results which have provided a significant in-
sight into the stability of a plasma confined by a magnetic field. There are
several defects in the theory, and so efforts are being made to develop other
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theories which are more rigorous but, on the other hand, more complicated ;
some of these alternative models will be discussed below. ’

13.37. The main objection to the hydrodynamic theory is concerned with
the .postulate of frequent collisions. As the temperature increases, the cross
sections for Coulomb seattering collisions decrease (84.48 et seq.) and at tem-
peratures of thermonuclear interest they become so small that the mean free
path of a particle may be comparable with or, depending on the density, may
even be considerably larger than the dimensions of the containing vessel.
Thus, although collisions may be frequent at the densities and temperatures of
most laboratory experiments, they certainly will be much less common in an
actual thermonuclear reactor. The absence of collisions has several important
consequences,

) 13.:’58. In the first place, there is now no mechanism for partitioning the
kinetic energy of the particles equally among their three degrees of freedom:
thus, py, the pressure parallel to the magnetic field lines, will not n‘ecessaril;i
be tl‘le same as p,, the pressure perpendicular to the field. Second, there is
nothing to inhibit the motion of particles along the lines of force, and so heat
flow parallel to these lines is likely to be very rapid. Third, in a reacting
plasma, at least, electrons and ions will undoubtedly be at different tempera-
tures. In brief, therefore, it may be concluded that the plasma will not be
even in local thermodynamic equilibrium. If by any chance it is, then this
local equilibrium will be upset if the plasma is in any way disturbed. Tt
should be pointed out, too, that electrons and ions do not have to move to-
gether, and local deviations. of charge density from zero may oceur.

13.39. For the foregoing reasons, the nonequilibrium alternatives to the
hydromagnetic theory start from the opposite assumption to that in §13.11
namely, it is supposed that there are no collisions or, if there are any, theilj
effects are neglected. ' This postulate alone is not enough to bring about a
sufficient simplification of the problem and another assumption is needed.
Th(? one made is to say that the magnetic field is so strong that the radii and
p_erlods of the gyromagnetic orbits of all particles are much smaller than any
dlstz%nces and times, respectively, of interest. In place of the three hydrody-
namic equations (§13.12), the nonequilibrium theories either utilize directly a
.form of the Boltzmann distribution equation applicable to charged particles
in Yvhich the collision term is disregarded [19-21], or they take averages over
individual orbits which lead to results essentially equivalent to the Boltzmann
equation [22, 23].

13.40. The so-called collisionless Boltzmann equation® may be written as

f

3 1
Trvvs+2 [E +ex B)] VS =0, (13.16)

*Som_e_ workers in the field rgfer to this as the Liouville equation, since the latter has
no collision term. However, it seems preferable to use the expression “collisionless

Boltzmann equation” to imply that the Boltzmann ion is « isi
L ply that equation is “correct,” but coll :
being ignored as an approximation in order to simplify the treatment. ’ orusions are




498 CONTROLLED THERMONUCLEAR REACTIONS

where the distribution function f, which is really f(x, v, t) is defined so that
£33x8%v is the number of particles in the volume element 8x and in the velocity
range 8%v at position x and velocity v in the six-dimensional (position-velocity)
phase space at time ¢; the symbols e and m represent the charge and mass
of the particles and Vo is the gradient operator for differentiation with respect
to the components of the velocity vector rather than with respect to the space
coordinates [24, 25]. '

13.41. In order to obtain equations for the mass and momentum balance,
the zero- and first-order moments of the Boltzmann equation are derived by
multiplying equation (13.16) by mdv and mvdv, respectively, and integrating
over all velocity space. Utilizing the Maxwell relationships, as in §13.13,
the results are found to resemble formally equations (13.1) and (13.2) of
hydrodynamies, except that the gradient of a scalar pressure, i.e., VP, in the
latter is replaced by the divergence of a pressure tensor.

13.42. A difficulty arises in connection with the development of the second-
order moment of equation (13.16) to yield an expression for the energy
balance. This introduces third moments of the distribution function which
are the components of the heat flow vector. In ordinary hydrodynamics,
use is made of the fact that, as a result of collisions, the distribution function
is Maxwellian (or nearly so) in form. The third moments can then be related
to the second moments and the equations can be closed. In addition, the
heat flow is often so small, because of frequent collisions, that it can be

neglected; in this event, the result reduces to the same form as the adiabatic -

equation (13.3).
13.43. In applying the situation to a plasma, however, the neglect of

collisions makes it impossible to obtain closed equations because the heat flow
terms cannot be evaluated. The simplest way of dealing with the situation
is arbitrarily 40 cut off the energy balance equation at the third moment, which
is equivalent to assuming no heat flow. The equations now form a closed sys-
tem. The postulate of a strong magnetic field (§13.39) means that it is
necessary to distinguish only between the components Py and p, of the pres-
sure tensor. As a result, the single adiabatic law, which can be written as

d(p/pY) /dt =0, is replaced by

d (mﬁ’) -0
dt\ ¢

d(p.\_
dt(pB>'°’

where the d/dt is the hydrodynamic operator defined in §13.12.

and

13.44. /The nonequilibrium theory outlined above has a serious defect,

presses heat flow under collisionless conditions when

since it artificially sup
pected to be considerable.

thermal transport along the magnetic lines is ex
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g):zrt;fllii;s,isﬂ;e ‘_ohelory has le(‘i.to‘ some new results of interest. One of
" th,e ik ca}srénc? of 1nonethb.rlun.l ’.oheories, arises from a consideration
pil ke oo ?m'af plasma having initially uniform pressures py and p
s é)}g X iform field Bo.' By solving the problem of plane wavesL
at exponentially growing waves are possible. In other words’

instability may occur even in i i
condition for cability 1 a plasma with a uniform distribution. The

P B
6(p, + B/8m) ~ Pn S Prt

whe i

" t}l;z P fa :I;ld Py are th(? res.pe(.:tlve undisturbed values; hence, for stabilit

restrict}i)ve St:f)'f': must’;1 lée within the range indicated [26] A,slightly mor);
: ility condition, which tak : i ” i

o b T st oo fom,l [27(:] takes heat flow into consideration, may be

2 2 BZ
DL + B2/87r< P||< Y2 + a
13.45. i i
nonequﬂibﬁr& I;n‘zirestlng new general result derived from a more elaborate
e teory is that the.Maxwellian velocity distribution leads to
o 1;1 S atg and that deviations from this distribution, if sufficientl
A in themselves cause instability. A particular case a:rises when p}|:

_and p, are unequal.

13.46. In iti i
g OfI noi(:d:fill?]il 'to the ff)regO}ng conclusions, some other interesting
features of beean i glum tbeorles will be noted. First, it may be mentioned
b 1b has been, g111§12 possible tp develop an energy principle, analogous to
ot a1, s t.. }, basec_l dlrectly.on the collisionless Boltzmann equa-
o ove;‘ o Oris.fzn 1? !y gqglvalent p?lnciple has also been derived by sum-
nstant roult t}1l :to.fmdlwdual partl(':le:'s [23]. These theories lead to the
iy , 1 hp“ and P, are initially equal, then the W predicted
e B s uagt? as ti at obtalnt?d from the simple hydromagnetic theory
o e 0? it on (13.13). T.hls‘ means that, when stability is predicte(i
i (ta)nergy (or var}atlona.l) principle in hydromagnetic theory
o the e the(r)lry ewifl(;(eip:ﬁd with confidence in many cases. The utility’
ciencies weid mupaeet us appear to be greater than its numerous defi-

13.47. All three energy principle i i
states of static equilibriumpof thz s;slti(:;llt;osnzdv:}?ofj ' aJIIPfe t?x};pgfal?rllz (;Islly "

) in a

stead . R
o :n }; ds(‘ri?t‘f,le oflmotlon, e.g., if 1§ is rotating, the kinetic energy of this motion
1o an addit }?:;a 1?.oml'lce 'froﬁl which an instability might be driven. What this
me ically is that, in linearizing e i it i
nat quation (13.

it E, zgt pzrm1ss1ble to neglect terms arising from p(v(-v% ks
e };ms.ma i:l;sli;hodtbas been deve%oped for handling the problem arising when

motion, by assuming a strong magnetic field and no collisions
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[20, 29, 30]. The results lead to linearized equations of motion, i.e., to normal
mode equations, rather than to a variational principle. This means that the
treatment is very difficult to apply to anything but the simplest geometry, al-
though it may be amenable to machine caleulations in other cases.

APPENDIX A: APPLICATION OF THE VARIATIONAL PRINCIPLE
TO A PERFECTLY DIAMAGNETIC PLASMA

13.49. In the following treatment it will be shown how the variation prin-
ciple (or 8W-formalism) has been applied to determine how the stability of
a perfectly diamagnetic plasma confined by a magnetic field depends on the
direction of the curvature of the vectors of the field lines [4]. Starting with
the basic equation (13.12), with 8W defined by equation (13.13), some general
results will first be derived, and then they will be applied to the case of im-
mediate interest.

13.50. The integral for 8W can be transformed by partial integration uti-
lizing the relationships

—£VXQXBy =@+ V-[Q X (§ X By]
and
—£-V[ypV £+ £ VD] = vpo(V £ + (V-£)(§- VDo) — V- [YPoEV - £ + (€ VPo)].
It follows, therefore, that

oW = oW, — %fs (n-E)[ypoV & + & Vpo — 41_,,Bﬂ'Q] d (1317)

where 8W; is defined by
2
W= [[& - 5Q X £+ mu(v-82 + (v-0E-vp) |0, (1318)
and ds is an element of surface; the integral in equation (13.17) is taken over
the surface of the plasma whereas that in equation (13.18), as in equation
(13.13), is over the volume. '
13.51. In normal laboratory experiments, the “vacuum” outside the plasma
usually contains enough particles to conduct current, even if it will not produce

a pressure; hence, the plasma boundary lies on the conducting walls, where -

(n-&) =0, the symbol n representing the unit vector normal to the surface;
the surface integral then contributes nothing. In idealized cases, however,
where a perfect vacuum exists or when the walls are nonconducting, the
surface integral must be evaluated. This is best done by using boundary con-
ditions to simplify the integral.

13.52. The first step is to calculate the vacuum fields; these are indicated
by a circumflex. The electric field is given by

E=E +8& =F,
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since B, = 0, and the magnetic field is
ﬁ = ﬁo + ﬁ’.
The perturbations E’, B’ together f
fore derivable from a potential,
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orm an electromagnetic field and are there-
Thus, if A represents a vector potential,

then
B -

o VXA (13.19)
A, -1 ) oA 0
E = P —?A, (13.20)

and A satisfies the equation
VXVXA=0. (13.21)

No1 3sca,lar pTotential is necessary as no charge accumulations are assumed.
" .53. I\.ext, the boundary conditions will be derived. In the first place
e magnetic field must be tangent to the plasma-vacuum interface. That’

this is true for the interior field foll i
18 ows directly f i
condition on the vacuum field is ¥ trom equation {136). The

n-B' = n-v X (£ XB,). (13.22)
The second condition follows from the

to an observer moving with the in
electrical field is zero.

assumption of perfect conductivity:
: ‘terface, the tangential component of the
Transcribed into the laboratory frame, this condition is

’ 1 i P
nX[E +;(v><Bo)]=nx[E'+%(v><Bo)]~
But

E'+%(vao> =0,
therefore
nXA=—(mg8B,

The_third boundary condition is that the t
continuous across the boundary,
This condition can be written

potap  Bot B _ (B + By
H T 4

(13.23) ’

' oi.gal pressure, p + B2/8r, must be
as otherwise infinite acceleration would result.

8=
together with the equilibrium equations
B¢ _ By
Po+ 8t  8r

Upon subtraction, the result is

1 L s
5p + 47r BoBB = EBo'ﬁB.
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n i i i ment

In these equations dp means the change in p resulting from the dilsplace

over £; the significance of 8B is similar. In each case the change is computed
H

moving with the displacement. 1t follows then that
sp=1p +EVD
8B = B’ + (§-V)B,

i q i 13.7) f p’ q i
and When these are used bogethel Wlth € uatl()n ( o1 and € ua.f‘,l()n
(13-6) (834 ‘13-19) fOI B or ﬁ ’ lespecbl&eljyy t‘hele 18 Obt’alned the Condltlon

)

1 1 L eowyiBe — Bl (13.24)
—7p°V‘5+ZIrB°'Q:ErB°'VXA+81r (- V)L Bo o

. . 9
13.54. Returning now to equation (13.17) and setting equation (13.24)
into the surface integral, it is found that

s - w]——}-ﬁ-vx.&}ds.
o oy = - L [ e [m+ 25 |- |
Since both By and jo are parallel to the interface, the tangential derivative o

— 2 .
Po + 532—-55;31 vanishes, and so

— B2 B — Boz}
£V [’Po + &E‘E“L] = (£-n)n-v [:Dn +7 5

Furthermore, from the boundary condition equation (13.23),

[

1
B - | = v X Ads
fsf;(n_-g)Bo-v X A ds [ @xn

e [LaaxvXxAds
S 4

. o
Finally, this may be transformed into a volume integral taken over the va

uum region; thus,
— ._._1 3.
B = : v X Al d%
f;r (n-£)By-v X Ads = [Hrv [A X

= —1~[(V><A)2~A><v><v><A]d3x.
T lv4r

. . hat
Combining these results, and making use of equation (13.21), it follows tha
oW = oW, + oWs + oW,

where W is defined by equation (13.18) and

M] (13'25)
Ws= -3 [ @omy [p[, 1+ B2 s

Lo xapar= [ Ee 32
o = [y v xapan = [ G @

and
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It will be recalled from §13.21, that the condition for stability of the plasma
is that W be not negative for every & which satisfies the boundary conditions.

13.55. By means of the results derived above, it is now possible to determine
the conditions of stability of the perfectly diamagnetic plasma confined by
a magnetic field. First, it should be noted that if By =0, then Q = 0 and p,
is a constant, so that equation (13.18) becomes

W, = %/}, vpo(V-E)2 d3z > 0. (13.27)

In fact, §W, may be minimized to zero, by choosing & divergenceless, without
compromising the freedom to choose (&+n) arbitrarily.

13.56. Pressure balance requires Bo? to be constant on the surface; thus,
writing

B, = Byr,
where 7 is a unit vector in the B direction, so that
V(Bg2) = 2302(1'er.
Consequently, equation ( 13.25) for §Ws may be written as

By
| Ws =2 [ (0-:0-K) ds, (13.28)
where K is the principal curvature vector* defined by
K= (rv)r.

Because B2 is constant over the surface, it follows that K is normal to the
surface, and

1

R’

where R is the principal radius of curvature of the £ line through the point in
question, and the sign depends upon whether K points outward or inward from
the surface. It will be apparent that if K points outward, the integrand of
equation (13.28) is everywhere nonnegative. Since W3 is certainly not nega-
tive, the system is stable.

13.57. Suppose, now, that over some region K points inward. The value of
(&-n) will be chosen 50 as to vanish outside the given region. In order to treat
this region, it is convenient to introduce orthogonal, curvilinear coordinates
(u', u?, u®), so chosen that B, =0 everywhere and, further, that B; =0
on the surface. Thus the surface is a u! surface and on it B points in the
u? direction. Over the region being considered it is postulated that

n-K =4

(1-8) = sin axe+sin fx, (13.29)

* This is one of the Frenet formulae [31].
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where x; is defined by
Xi = ] b du?,
o that the x; are arc lengths along the 1 eurves. ‘ .
’ 13.58. In order to calculate 3W#, it should be noted that, since B’ is curl-
free, it is possible to write
B = -ve
and, therefore, .
= — |, (V®) ds.
W el b (V)2 ds

This is minimized by choosing @ to satisfy the equation
vip = 0 (13.30)
and as a result of this choice it is possible to perform a partial integration
which yields
. : (13.31)
W =— 5 fs (@ve)pds.

13.50. 1In the postulated coordinate system, the boundary condition equation
(13.22) becomes

h &) _ _ L
~(n-Vd) = }:;Boa2 (hl) = -5 a@,\
so that on the surface, @ has the form \
}17 9@ = — Boat ¢S aXa-sin BX; + ©. (13.32)
1
* Solving the Laplace equation with this boundary condition yields
® = By % cos aXy-sin fXg-e™ ™ + O (13.33)
Y
where 12,34
v = o+ B (13.34)
Here the symbol © represents terms of the order of curvature divided by
aorf. _ -
13.60. The use of equation (13.29) now yields
AB
W= - 3211'-1?’

where A is the area over which (n-§) is not equal to zero and R is the average
radius of curvature over this area. Similarly, equations (13.32) and (13.33)

give

_AB &
T 82r v

oW + 6,
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so that
ABre 1. 7
oW = £ [T -t

Choosing « as small as possible, that is, of the order of the reciprocal length
2

of the region A, and B very large, the terms—:— + 6’ may be made as small

as desired. Hence, 8W can be made negative and the system is unstable.

APPENDIX B: NORMAL MODE ANALYSIS OF THE PINCH
WITH SHARP BOUNDARY

13.61. As an illustration of the application of the normal mode procedure
for determining the conditions of stability of a plasma, an idealized model
of the cylindrical pinch will be considered. The plasma is assumed to be
in the form of a eylindrical rod in the interior of which no current flows.
There is, however, a magnetic field in the plasma; hence, in eylindrical co-
ordinates, the interior field has the form

By =(0,0, B.); B. = constant, (13.35)

where, as before, By is the equilibrium field veetor. Qutside the plasma, the
most general field possible is assumed, namely,

B, = (0, By, B,) (13.36)
B, = constant (13.37)
By =b/r, b = constant. -~ (13.38)

As in Appendix A, a circumflex over a symbol indicates the value in the vac-
uum outside the plasma. The plasma pressure is constant, and so the normal
mode equation (13.9) reduces to

— o5 = V(1pV-E) — f; B X (V X Q), (13.39)

the zero subscripts, indicating equilibrium quantities, having been omitted
since this will cause no confusion. The three components of equation (13.39)
represent, the equations of motion which, together with the appropriate bound-
ary conditions, permit a solution of the problem.

13.62. Because of the linear nature of the equations, the spatial component
of the displacement vector may be analyzed into its Fourler components by
writing

E = [E(r)&(r)£.(r)] exp (im0 + ikz). (13.40)
When this is done it follows, from the definition of Q in §13.18, that
Q, = kB (13.41)
Qs = ikB.& (13.42)
Q.= —B. [% 3 (r&) + 3’;’—“ sa]. (13.43)
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The individual components of equation (13.39) then give the following set of
normal mode equations:

— P, = B,(ypV-B) — o (3.Qc — ikQ) (13.44)

oty = 2 pyop) - 2 (P 0. - i) (13.45)
r 4r \ r ** :

— o2t = ik(ypV - £). (13.46)

The form of these equations suggests that the dependent variables be changed
by introducing the new function ¥ defined by*

1
‘PEVPV-E—EB'Q

B2\[1 im .
= (v + E)[Lots) + 6 ] 4 v (13.47)
In terms of ¥, equations (13.44-46) may be rewritten, respectively, as
k2B22
(— - ,,92> £ = % (13.48)
4
2B 2 ; ‘
(’—“ﬁ - pm) =Ty (13.49)
4 r
o (1) Je =
[ BE (14 ) |6 = ke (13.50)

13.63. The values of &, &, £ given by the equations (13.48-50) may now be
set into equation (13.47). The result is a differential equation for ¥; thus,
eV 1 0¥ (g Mg
o + o (K + 7d)\l/ =0 (13.51)
where K? is defined by

k?B2

— o 2
Rr=dt g P (B
vw+ = —z——pﬂz(1+ )
4r 4x 4myp

This, together with equations (13.48-50), which now define the &, is equiva-
lent to the original equations of motion. Equation (13.51) is a form of
Bessel’s equation for an imaginary argument [32] and the solution is

¥ = I.(Kr). (13.53)

*The use of this procedure for solving equations 1344, 1345, and 13.46 is based on a
suggestion made in connection with a similar problem by Reimar Liist (private com-
munication). It would seem to be applicable in many cases where there is no current flow
in the interior of a plasma.
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The constant K2, and therefore Q2, is determined by the boundary conditions.
For the vacuum field it is possible to write

2

B = —vs,
and, representing ® by
& = &(r) exp (imd + ikz),
Laplace’s equation takes the form

e 1 4o m?
dr2+r'dr—<k2+r_2>q>=0’

so that

® = Cl.(kr) + DK, (kr), (13.54)
where C and D are constants, to be evaluated below.

13.6.4. It will now be supposed that there is a perfectly conducting rigid wall
of radius R, located in the vacuum.* At this wall

CI,/'(kRy) 4+ DK,/ (kRy) = 0, (13.55)

where the prime‘implies the derivative with respect to the argument. At the
plasma-vacuum interface, where r = R, the boundary condition given by equa-

tion (13.22) becomes
k[CI.'(kR) + DK.'(kR)] = z(kB + Z—’B,,) B

or, using equation (13.48),

iK (kB, + = Bo)
CIw/'(kR) + DKy (kR) = —reme——" i L./ (kR). (13.56)
i (4—; - o)
From equations (13.55) and (13.56), it follows that
. m ,
o _ K./ (kRo) . K (kB, += Ba) I/ (KR)
L. (kR)K,. (kRo) — K./ (kR)I,. (kRo) (kﬂB;
o (BB o)
4
, iK (chz +2 Bo) I1./(KR)
B —1,.' (kRo) _ r i
I, (kR)K,' (kRo) — K./ (kR)I,/ (kRo) kB2
Bl e PW)

13.65. The boundary condition represented by equation (13.24) can be
written as

*In order to avoid pos.sible confusion with the general coordinate r, the radii of the
wall, and qf the plasma will here be represented by R, and R, respectively, instead of the
corresponding lower-case symbols used in the main text.
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-¥ = ~ (kBZ + mBO) @+ —1_ Erar(Bz2 + Bﬂz);
4 r 8w

and upon setting in the values for ¥, &, £, By, and the expressions for the con-
stants C and D given above, the result is

kB2 , .
p (i - ) kD) o)
" KI,'(KR) "R
1 m 5\ [ Kn' (kR)IW(kR) — L)' (kRo) Kn(kR)
+ E(kg,Jr - B,,) [ ] (13.57)

. Km’(kRO)ImI(kR) = Iml(kRo)Km’(kR)
This is seen to be a dispersion equation which relates the frequency Q of the
waves to the propagation vector defined by

k= (o, i k)
r

13.66. The dispersion equation is transcendental and can be solved only by
numerical means. If the values of Q2 are positive then the system is stable, but
if they are negative then it must be unstable. The actual determination of
which configurations are stable and which are not is laborious, but it has been
carried through and the results obtained were given in §13.27 et seq.
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