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Chapter 13 

PLASMA STABILITY THEORY * 

INTRODUCTION 

STABLE AND UNSTABLE EQUILIBRIA 

13.1. Nearly all the proposals for confining plasmas at high temperatures, 
with a view to the realization of thermonuclear reactions, involve the use of 
magnetic fields in one form or another. Hence, the problem of the stability 
of the plasma in a magnetic field is of paramount importance. Early experi­
mental and theoretical work showed that the plasmas in simple pinch and 
stellarator systems were basically unstable. Consequently, efforts have been 
made toward the development of a theory of plasma stability in the hope that 
the instabilities might be understood and methods developed for eliminating 
them or at least inhibiting their rate of growth. 

13.2. Since the whole field of plasma confinement, and particularly of sta­
bility during confinement, is relatively new, and since there are undoubtedly 
several fundamentally different types of instability, no really satisfactory the­
ory of plasma stability exists at the present time. Some progress has been 
made in connection with hydromagnetic instabilities, in which the plasma is 
treated as a simple hydrodynamic fluid interacting with a magnetic field, and 
a few significant conclusions capable of experimental test have been reached. 
However, it must be admitted that, except for one special case, the require­
ments for the stabilization of a plasma under conditions of practical interest 
have not yet been elucidated. Because the stability problem is basic to all 
aspects of research in controlled thermonuclear reactions, various methods of 
solving it which have been tried will be outlined and their limitations dis­
cussed. Although the treatments are highly mathematical, emphasis will be 
placed as far as possible on their physical significance. 

13.3. In an unperturbed plasma in a state of equilibrium and at rest, the 
isotropic (scalar) pressure balance equation is 

Vp = !.(j X B), 
c 

*Based on a draft prepared by Bergen R. Suydam. 
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which has three components corresponding to the three directions of the vectors. 
However, these three component equations relate four functions, namely, the 
pressure and the three components of the magnetic field. Consequently, equi­
librium can be realized, in principle, with a wide variety of magnetic fields. 
The condition required is . that V x (B x V x B) = 0; for such fields, and 
only for such, is confinement of a scalar pressure possible. The central prob­
lem of plasma confinement is to determine which of the equilibria, of the many 
possible, are stable. In a stable system, a small perturbation will lead to an 
oscillation about the equilibrium state, but if the system is unstable, the per­
turbation will grow indefinitely. It will be seen that the treatment of the 
stability of a plasma confined by a magnetic field has many features in com­
mon with that of wave propagation. The question that will be asked is: Do 
perturbations remain at the same level or do they continue to grow? 

13.4. Before discussing the various approaches to the subject of hydromag­
netic plasma stability, it should again be emphasized that no really satisfactory 
theory has yet been developed. The present chapter should therefore be re­
garded as being in "the nature of a progress report rather than a definitive ac­
count; it is included in this book because of the essential importance of the 
problem with which it is concerned. 

SIMPLE EQUILIBRIUM SYSTEMS 

13.5. A simple situation, for which it appears that an unequivocal solution 
to the stability problem is possible, may,--be treated in the following manner. 
Consider a portion of plasma having a uniform kinetic preSSU1(e Po. The 
plasma is assumed to be perfectly diamagnetic, so that it contains no internal 
magnetic field. Suppose this plasma is confined by an external field, the value 
of which is Bo at the surface of the plasma. The condition of equilibrium is 
then 

B02 
po =-,

81r 

so that the (uniform) pressure of the plasma is exactly balanced by the mag­
netic pressure of the confining field. 

13.6. In order to determine whether this equilibrium is stable or not, imagine 
the surface of the plasma to be disturbed slightly by forming a wave (or "flute") 
with its crest and trough running parallel to the magnetic field lines. If the 
trough and crest have the proper dimensions, there will be no change in the 
volume of the plasma and hence no change in the pressure. Suppose, in the 
first place, that the confining field lines are curved so that they are concave 
toward the plasma. This is represented in Fig. l3.lA, where I shows the side 
view and II the end view, in which the wavelike disturbance is indicated. It 
follows from Maxwell's equation V X B = 0 that the magnetic field strength 
will diminish with increasing distance from the center of curvature of the field 



486 
487 

CONTROLLED THERMONUCLEAR REACTIONS 

lines. Consequently, in the case under consideration, the magnetic field on the 
crest of the wave is such that B2 < B02, whereas in the trough B2 > B02. As a 
result, a net force acts in such a sense as to heighten the crest and deepen the 
trough, that is to say, the disturbance will tend to grow in amplitude. It fol­
lows, therefore, that the particular equilibrium is unstable. On the other 
hand, if the magnetic field lines are convex toward the plasma, as represented 
in Fig. 13.1B, the net magnetic force is such as to depress the crest and raise the 
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FIG. 13.1 . Unstable and stable magnetic field-plasma configurations. 

trough of the disturbance under consideration. In other words, the force acts 
in such a manner as to counteract the disturbance and the equilibrium is stable. 

13.7. The foregoing discussion suggests and rigorous analysis (see Appendix 
A) confirms that a perfectly diamagnetic plasma, i.e., one with no internal mag­
netic field, is stable or not according to the curvature of the lines of the con­
fining field at its surface [1-3]. If every such line is everywhere convex to­
ward the plasma or, in other words, if the center of curvature of the magnetic 
lines on the plasma-field interface always lies in the direction away from the 
plasma, then the system is stable. On the other hand, if the lines are anywhere 
concave toward the plasma, so that the center of curvature is within (or to­
ward) the plasma, then the system must be unstable. Thus, a pinched dis­
charge consisting of a very thin sheath of essentially infinite conductivity, with 
no trapped axial field, will be fundamentally unstable. 

13.8. In order for a completely diamagnetic plasma to be stable when con­
fined by a magnetic field, it cannot form a convex body, but must have cusps. 
A number of different configurations satisfying this requirement, some of which 
are being studied experimentally, were described in §11.22 et seq. 

HYDROMAGNETIC THEORY 

NORMAL MODE ANALYSIS 

13.9. The foregoing discussion has been essentially qualitative in nature 
and has dealt with the restricted situation of a perfectly diamagnetic plasma. 
For practical purposes, information is required concerning the rate of growth 
of various instabilities that might develop and also on how the growth may 
be inhibited. Furthermore, in many cases of interest, there is a magnetic 
field inside as well as outside the plasma; the situation is then more realistic, 
but also more complicated, than that considered above. The displacement of 
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the plasma surface now results not only in a shift of the magnetic lines in the 
vacuum field outside, but will also cause the lines within the plasma to bend, 
stretch, or be distorted in other ways. This leads to additional forces which 
require more detailed analysis. The mathematical treatment of such a system 
is very complex and so it is necessary to make approximations in the model 
of the plasma in order to simplify the results to the point where they can be 
applied to a practical geometry. 

13.10. The simplest theory to be described here is based on the treatment 
of a plasma as a simple (ideal) hydrodynamic fluid which is subjected to 
the action of electromagnetic forces. · In other words, it involves a combina­
tion of the standard equations of hydrodynamics with Maxwell's equations 
of electromagnetism, leading to a complete set of differential equations deter­
mining the motion of the plasma. This hydromagnetic theory is of interest 
both because it has led to concrete results and because the domain of its 
validity has been shown to be much wider than might have been anticipated 
from the approximations made in its development (§13.46). Essentially, 
the theory of plasma stability has features in common with that of plasma 
waves, since instabilities may be regarded merely as being waves which grow
at an ever-increasing rafe. 

13.11. In order to apply the hydromagnetic equations to a plasma, a num­
ber of simplifying postulates are made. First, collisions between particles 
are assumed to OCcur so frequently that the velocIty distribution of the par­
ticles is isotropic: or very nearly so. Actually, this means that the plasma can 
5e characterized at each point by a mass density p, a scalar pressure p, and 
a single temperature. Incidentally, the frequent collisions provide a mech­
anism for keeping the neighboring particles together sO .lthat they form a co­
herent element of fluid which can be treated by simple hydrodynamics. The 

second postulate is that, as a result of the high rate of particle collisions, ~ 

flow is inhibited within the plasma, so that the system is adiabatic. Finally, 

it" is supposedthat the lasma tem erature is so hi h tha it is essentiall a 

perfect conductor. This means that -such currents as flow produce no ohmic 

heating nor dOthey require electric fields to drive them. 

13.12. With these simplifications, the plasma behaves like the perfect fluid 
of ordinary ·hydrodynamics, except that it is subj ect to electromagnetic forces. 
Exactly as in fluid mechanics, there are three conservation equations, asfollows: 

. Conservation of Mass 

dp 
dt + pV ·v = 0, 

(13.1) 
Where d/ dt represents the hydrodynamic operator, i.e., 

d a-=:-+v,v
dt at ' 

I 
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v being the vector velocity of the plasma and t the time. Equation (13.1) 

is also known as the equation of continuity. 

Conservation of Momentum 

(13.2) 
p ~: = -Vp + ~ (j X B), 

where d/dt is the hydrodynamic operator, and j and B are, as before, the 
current density and magnetic field vectors. Equation (13.2), which neglects 
the effect of gravity and of the electric field, since the latter is assumed to be 
zero, is sometimes known as the force (or motion) equation (cf. §4.116). 
It describes the motion of the plasma under the combined action of a pressure 

gradient and a magnetic body force. 

Conservation of Energy 

dp (13.3)
dt + 'Yp(V ·v) = 0, 

where d/dt is the hydrodynamic operator defined above and y is the ratio of 
the specific heats, which may generally be taken as the monatomic gas value, 
i.e., 5/3, for a plasma. This equation implies adiabatic behavior, as may be 
seen by combining it with equation (13.1) to give 

1 dp 'Y dp
P. dt = ~ . dt 

and integrating; the result is 
p = constant X p'Y, 

which is the familiar adiabatic law for a gas. 
13.13. In addition to the three hydrodynamic equations given above, there 

are the Maxwell equations. As the plasma is assumed to be perfectly con­
ducting, an observer moving with the local velocity of the plasma would 

experience no electric field; hence, 

E + -1 
(v X B) = O. 

c 

When this is set into Maxwell's equation 

VXE= 
1 aB--.-,
c at 

there is obtained 
aBat = V X (v X B) 

(13.4) 

as the equation of motion of the magnetic field. Physically, this result im­
. plies that the plasma and the magnetic field move together. 
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13.14. Use will also be made of the Maxwell relationship, neglecting the 
displacement current (cf. §3.11), 

V X B = 471' j, (13.5) 
c 

which is essentially a definition of the current density. Finally, the particles 
move in such a way that the charge density u is given by 

v·E = 471'u, 

and the divergence of the magnetiC(, field is zero, i.e., 
·1 

v·B = O. :i 
l 

13.15. Consider an equilibrium system at rest, so that v = 0, character­
ized by the state variables po, Po, and Bo. These variables are connected by 
equation (13.2) which now takes the form 

::1 

o = -vpo + ! 00 X Bo).
c 

Suppose that the state of equilibrium is perturbed by a very small amount, 
so that the pressure becomes Po + p', the magnetic field becomes Bo + B', 
and so on. The system will now have a small velocity v, and the quantities ;1 

i 
1 

'!p', B', and v will develop with time in accordance with the equations of motion 

given above. It is essential that the perturbations p', B',· etc.,· are considered 

to be small, so that their products, both with themselves and with each other, i. 

are negligible. In this way, it is possible to achieve linear equations of motion. '! 


13.16. It is convenient to introduce a displacement variable vector ~ 
defined by 

a~ == v or ;;l: == Jv dtat , 

so that equation (13.4) leads to 

aB' (a~)at = V X at X Bo 

which, upon integration, yields 

B' = V X (~ X Bo). (13.6) 

13.17. Writing Po + p' for p in equation (13.3) and introducing the defi­
nition of ~, this expression takes the linearized form 

o.p' (a~) (a~)at +. at . vpo + 'YPov, at = 0 

and integration then gives 

p' = -'YPov,~ - ~,vpo. (13.7) 
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From equation (13.2), with j equal to jo + j', it fo11o'ws that 

po ~~ = -vp' + ~[(j' X Bo) + 00 X B') J. 
Upon substituting equations (13.6) and (13.7) for B' and p', respectively, 

and utilizing equation (13.5), there results 

a2~ 
Po at2 = V['YPoV'~ + ~'VPo] 

+ :7r [V X V X (~ X Bo) X Bo + V X Bo X V X (~ X Bo)], (13.8) 

where po, Po, and Bo are determined by the initial equilibrium distribution. 
13.18. Because equation (13.8) is linear in the unknown vector function 


~, it can, without loss of generality, be simplified by analyzing it into its 

Fourier components. Thus, assuming the time dependenpe to be of the form 


Hx, t) = ~(x) exp (iQt) , 

where x represents the space coordinate vector, equation 	(13.8) becomes 

1 ­
_POQ2~ = vbpoV'~ + ~'VPo] + 47r [(V X Q) X Bo + (V 	X Bo) X Q], (13.9) 

.::- F , 
where Q is defined by 


Q = V X (~ X Bo). 


It should be noted that the ~ in equation (13.9) and subsequently is really 
2

the spatial component ~ (x), as is apparent frori1 the presence of 0 on the 
left side of the equation. The argument (x) is omitted here to simplify the 
representation. Equation (13.9), called the normal mode equation, com­
bined with the boundary conditions on ~, namely, (a) ~ is finite everywhere, 
and (b) the normal component of ~ vanishes on any metallic conductors 
present, e.g., magnetic field coils or external conductor, forms an eigenvalue 
problem for the determination of 0 2 • If every eigenvalue is positive, then 
every mode is periodic in time and is a simple ,(traveling or standing) wave. 
If, on the other hand, one of the eigenvalues of 0 2 is negative, then one of 
the two associated modes grows exponentially with time and the system is 

unstable. 
13.19. The normal mode equation (13.9) is analogous to that used in the 

study of acoustical waves and is identical with that which is applicable to 
Alfven (plane) waves in a plasma having a finite pressure. When the mag­
netic field is uniform, a further Fourier analysis, with respect to the space 
variable x, is possible; thus, ~ may be taken to be of the form 

~ = (h, ~2, ~3) exp (ik·x + iQt) , , (13.10) 

and then equation (13.9) reduces to a system of linear algebraic equations 
which determine the so-called dispersion relationship between 0 

2 
and k. In 
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many cases, the situation is further simplifiyd by taking p to be constant, so 
that \1p is zero. An example of the application of the normal mode method 1 

to the stability of a pinched discharge is given in Appendix B to this chapter. :1 : 
:i 

VARIATIONAL METHOD iii 
i

13.20. Although solution of the normal mode equation is possible in the ii 

simpler cases, with more complicated geometries equation (13.9) remains as /: 

a system of three coupled partial differential equations and is quite unmanage­
1 

i 
able. In these circumstances, another procedure can be used which replaces 'II 

' ! : 

the normal mode problem of equation (13 .9) by a simple variational proqlem 
'I, [4] . By sacrificing detailed knowledge of the normal modes, it is possible, 

in the following manner, to determine merely whether a given system is stable t 
, 

or not. First, as a result of scalar multiplication of equation (13.9) by ~ 
/

followed by integration over the volume of the plasma, there is obtained 

Q2 Jp(t·t) d3x = Jt·Ft d3x, (13.11) 

where F represents the negative of the complicated differential operator (on 

~) on the right side of 'equation (13.9). Because the normal component of ~ 

vanishes on the boundary, i.e., at infinity or at a conductor, the right side 

of equation (13.11) can be simplified by partial integration; thus, 


Q2 = olV , (13.12)
Jp(t·t)d3x 

where oW is defined by 


aU' == Jt·F~dax 

- J[4~ (Q. Q - X B· Q x ~) + oyp(v '~)' + (V·~)(~·vp) ] d'x.v 	 (13.13) j' 

13.21. The operator F can be shown to be self-adjoint, and so it follows 
that any vector function ~ which makes equation (13.12) stationary is an 
eigenmode and vice versa; furthermore, this stationary value of 0 2 is an 
eigenvalue. Thus, the eigenvalue problem is exactly equivalent to minimizing

2 
0 as given by equation (13.12). ,As seen earlier, stability of the plasma sys­ , : 

I ! 
tem to a perturbation depends upon whether 0 2 is always positive (stable) 
or whether any of the 0 2 values can be negative (unstable). But the denomi­ , ! 
nator of equation (13.12) is positive, and so the sign of 0 2 depends only on 
that of the numerator, i.e., 8W. Thus, the normal mode stability condition 
can be replaced by the following variational principle: the necessary and 
sufficient condition that the system be stable is that 8W, as given by equation 
(13.13), be not negative for every ~ -which satisfies the boundary conditions. 

13.22. The variational principle developed above is also called an energy 
principle, for it turns out, as might have been expected, that 8W is equal to 
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the change in potential energy of the system resulting from the displacement 
~. Consequently, only· those equilibrium systems are stable in which every 
conceivable small perturbation is accompanied by an increase of potential 
energy, i.e., by doing work on the system. 

13.23. The energy principle described above has been used to provide 
a rigorous confirmation of the general arguments presented earlier which indi­
cate that stable confinement of a perfectly diamagnetic plasma by a magnetic 
field is possible only when the center of curvature of the lines of force always 
lies on the field side of the plasma-field boundary. The details of the argu­
ment are given in Appendix A to this chapter. 

APPLICATIONS OF STABILITY THEORY 

STABILITY OF THE PINCHED DISCHARGE 

13.24. An important application of stability theory has been in the study 
of the straight cylindrical pinched discharge [5]. Here the simple nature 
of the geometry permits some generality in the consideration of pressure dis­
tributions. In the earliest models, the plasma was treated as a cylindrical rod 
in which the current was confined to an infinitely thin layer at the surface 
(cf. §7.35). As "VPo and jo vanish, the normal mode equation (13.9) then 
reduces to the simpler form 

1 
-pn2~ = V('YPoV'~) - 411" [Bo X (V X Q)]. (13.14) 

The spatial component of the displacement variable vector ~ or, in fact, of 
any perturbation represented by the primed quantities given above, may be 
written in the form of equation (13.10), so that for cylindrical geometry 

~ = Hr) exp (im8 + ikz), (13.15) 

where m is an integer, assumed to be positive, and k is real. As seen in 
§7.34, the value of m determines the nature of the plasma perturbation, thus, 
m = 0 represents a necking-off, m = 1- is a kink or spiral, etc. The wave 
length of the perturbation is equal to 2'1T"/lkl. If equation (13.15) is substi­
tuted into equation (13.14), there is obtained a set of three coupled, differential 
equations in the three space coordinates. Upon applying the boundary con­
ditions appropriate to the problem, namely, that (a) the magnetic field is 
tangent to the plasma-field interface and (b) the total pressure p + B2/&r 
is continuous across the interface, the required dispersion relation can be found. 
From this the condition for stability, i.e., 0 2 is always p~sitive, is derived. 
Except for the simplest cases, the actual determination of which configurations 
are stable and which are not, for different values of m, involves laborious 
numerical calculations. 

13.25. The first application of the normal mode analysis to a pinched 
discharge was made for a cylindrical plasma in which the current was con-
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fined to an extremely thin sheath at the surface, and there was no axial mag­
netic field [6). For the case of m = I, it was found that the system was un­
stable. The calculations Were extended to other values of m and it was shown 
that instability would also arise from m = 0, and, to a lesser extent, for m ;. 2. 
For sufficiently short wave lengths, the growth of the unstable perturbations, 
for all m values, was found to have an e-fo1ding time of (2jkjPo/po o) ", 
where ro is the tube radius [7). Since the velocity of Sound is equalr to 
(YPo/po) ", it has become the common practice to state that the instabilities 
in a pinched discharge grow, roughly, with a velocity equal to that of Sound 
in the given plasma. At high temperatures, this can be very large. 

/ 

b·I 

o 
o 	 0.5 1.0 

be 2.0 

FIG. 	 13.2. Conditions of stability to m == 0 and m == 1 perturbations in 
pinched discharge. 
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13.26. The normal mode method has also been applied to the case in which 
there is an axial magnetic field inside as well as outside the plasma, and also 
with conducting walls surrounding the system [8-10]. The stability conditions 
derived in this manner were lound to be essentially identical with those ob: 
tained by a procedure similar in principle to the variational method described 

above [11]. 13.27. The results of the computations are summarized in Fig. 13.2, for 

the two cases m = 0 and m = 1; the quantities bi and be, defined by 


_ Bz (int) d b - Bz (ext) 
bi= Be ane=~' 

represent the ratios 01 the B, field in the interior and exterior, respectively, 

01 the plasma to the Bo field at the exterior surlace 01 the constricted dis­

charge [8]. Since the. pinched plasma can exist only if the magnetic pres­

sure due to the external fields Be and Bz (ext) i$ greater than or equal to that 


due to the internal field Bz (int) , i.e., 

Be2 + Bz2 (ext) >- Bl (int), 

811" 811" /' 811" 


it follows that the condition can also be expressed by 
2 bi1 + be ~ 2

• 

Hence, in Fig. 13.2, the curve marked 1 + b,' = b,' represents the limit im­
posed by equilibrium. The parameter. is equal to ro/r, as defined in §7.17, 
where ro is the radius 01 the conducting wall, which may be taken as essentially 
the same as that 01 the tube containing the gas. A pinched discharge should 
be stable within the area between the curve for the given m and K values 
and the limiting curve lor 1 + b.' = be. Complete stability lor. a specified 
• occurs when the system lies within the stability region lor both m = 0 and 

m=1.13.28. It. will be observed that as the pinch ratio K increases, the stability 
region becomes steadily smaller, so that stability requires decreasing values 
01 b" i.e., 01 the axial magnetic field external to the pinched discharge. In 
lact, when. = 5, stability is possible only if b, is 2ero, sO that there is no 
external axial field. II the pinch ratio exceeds 5, the calculations indicate 
that stability cannot be achieved by means 01 an axial magnetic field and a 
conducting wall. Since it is desirable to have the rp.aximum possible · com­
pression, i.e., maximum " it is evidently necessary to try to keep the axial 
field trapped completely within the plasma. The stability conditions lor 
this situation were represented in Fig. 7.7 and discussed in §7.35 et seq. 

13.29. In later work on pinch stability, more realistic cases, in which 
the current is not confined to an infinitely thin layer 01 plasma, have been 
investigated. By allowing the current layer to have structure, more com­
plicated plasma modes become possible and the requirements lor stability 
become correspondingly more severe. The general nature 01 the results given 
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above remains unchanged, but an analysis now indicates that stability is not 
possible if there is an axial magnetic field outside the plasma in the same 
direction as the field within the plasma. It appears that, when the current 
layer is thin but finite, an axial field in the vacuum outside the plasma is 
required for stability but it must be in a sense opposite to that inside the 
plasma. However, the reversed field alone is not sufficient for stability, since 
a special surface distribution is required in addition [12]. 

13.30. In the case of very thick current layers, it is a relatively simple 
matter to utilize the variational principle to derive a necessary, although not 
sufficient, condition for stability which relates the pressure gradient in the 
plasma to ,the torsion of the magnetic field lines [13]. The general conclusion 
was given in §7.97, and will be repeated here for completeness. The lines of 
the combined axial and azimuthal fields form, spirals and their pitch, p., may 
be defined by 

Be 
p, == rBz' 

where r is the radius of the pinched, discharge; the quantity (1/p.) (op./or) 
measures the torsion (or "shear") of the field lines. The necessary stability 
condition alluded to above is then 

! (! .dP,)2 + 811" (dP) > O. 
4 P, dr B z2 ar 

As seen in §7.99, one possible way of realizing this condition is to apply an 
axial magnetic field outside the plasma in a direction opposite to that of the 
field within the plasma. 

13.31. It may be mentioned that stability conditions for the pinched dis­
charge, which are both necessary and sufficient, have been derived [5, 14, 15]. 
However, these involve complex mathematical expressions and their applica­
tion requires lengthy calculations. It would appear to be almost as simple 
to perform the variational problem directly for each case with the aid of a 
computing machine. 

STABILITY IN STELLARATOR SYSTEMS 

13.32. A,s indicated in Chapter 8, some use of hydromagnetic stability 
theory has been made in connection with stellarator systems, particularly 
of the kink (m = 1) and interchange instabilities. The situation in the stel­
larator differs from that of the pinched discharge in the respect that there is 
essentially only one type of magnetic field, namely the axial field, in the 
former case and this is largely within the plasma. Any azimuthal field that 
arises from current passing through the plasma, e.g., for ohmic heating, is 
negligible. 

13.33. The normal mode treatment has been applied to the situation while 
the plasma is being heated ohmically [16]. It has been found that, in a stel­
larator in which the rotational transform arises from the large-scale geometry 
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of the tube rather than from small local perturbations of the magnetic field 
produced by helical windings, the m 1 mode is the only one which can cause 
serious instability. This occurs when the rotational transform due to the 
longitudinal current just compensates for that caused by the geometry of the 
stellarator tube. The theoretical treatment indicates that, in this case, the 
effect of an external conductor is negligible, although such a conductor tends 
to suppress the kink'instability in a pinched discharge (§7.27). 

13.34. By means of the variational principle, it has been shown that, when 
the rotational transform arises from the geometry of the stellarator, as con­
sidered above, the plasma is always subject to the interchange (or flute) in­
stability. Utilizing the same procedllre it has been found, however, that this 
can be stabilized by means of a transverse, helical magnetic field, which can 
itself produce a rotational transform, as explained in Chapter 8 
Consider a plasma with an axial magnetic field inside it; this field must be 
so disDosed that any conceivable displacement requires work to be done. The 

may be visualized as a set of "onionskin" layers, each layer being a 
surface made up of magnetic field lines. If now the field lines are given tor­
sion (or shear), that is, if the directions of the lines are always different in 
adjacent layers, then no displacement of the plasma will be possible which 
does not bend the lines. Even if there is a wavelike displacement in which 
the crests and troughs are aligned with the magnetic field in one particular 
layer, the torsion of the field line will spoil the alignment in neighboring 
layers. In such a system work must be done on the magnetic field for any 
conceivable displacement, and stability will be determined by whether 
heat energy of the plasma can supply this work or not. 

13.35. With the aid of the variational (or energy) principle it has been 
found that torsion of the magnetic field lines, such as would be produced 
means of a transverse, helical field, as described in §8.19, has a stabilizing 
effect. The system is stable against interchange so long as the heat energy 
available is not too large or, in other words, provided the plasma pressure is 
small. These limiting pressures appear to be so low as to require f3 values 
of the order of 0.01. Furthermore, provided the rotational transform angle 
produced by the helical field is greater than and has the same sign as that 
caused by the ohmic heating current, it is expected that the plasma will be 
stable to perturbations of all m values. 

COLLISIONLESS (NONEQUILIBRIUM) THEORIES, 

THE BOLTZMANN EQUATION 

13.36. Although the hydromagnetic model of a plasma, based on the 
hydrodynamic equations (13.1), and (13.2), and (13.3), has been treated at 
some length, it is not because it is by any means a final or definitive theory. 
It is rather because it has led to results which have provided a significant in­
sight into the stability of a plasma confined by a magnetic field. There are 
several defects in the theory, and so efforts are being made to develop other 
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theories which are more rigorous but, on the other hand, more complicated; 

some of these alternative models will be discussed below. 


13.37. The main objection to the hydrodynamic theory is concerned with 

the postulate of frequent collisions. As the temperature increases, the cross 

sections for Coulomb scattering collisions decrease (§4.48 et seq.) and at tem­

peratures of thermonuclear interest they become so small that the mean free 


of a particle may be comparable with or, depending on the density, may 

even be considerably larger than the dimensions' of the containing vessel. 

Thus, although collisionil may be frequent at the densities and temperatures of 

most laboratory experiments, they certainly will be much less common in an 

actual thennonuclear reactor. The absence of collisions has several ~~~~""~~4. 

consequences. 

13.38. In the first place, there is now no mechanism for partitioning the 
kinetic energy of the particles equally among their three degrees of freedom; ./ 

PII, the pressure paraJlel to the magnetic field lines, will not necessarily 

be the same as P1., the pressure perpendicular to the field. Second, there is 

nothing to inhibit the motion of particles along the lines of force, and so heat 

flow parallel to these lines is likely to be very rapid. Third, in a reacting 

plasma, at least, electrons and ions will undoubtedly be at different tempera­

tures. In brief, therefore, it may be concluded that the plasma will not be 

even in local thermodynamic equilibrium. If by any chance it is, then this 

local equilibrium will be upset if the plasma is in any way disturbed. It 

should be pointed out, too, that electrons and ions do not have to move to­

gether, and local deviations of charge density from zero may occur. 


13.39. For the foregoing reasons, the nonequilibrium alternatives to the 
hydromagnetic theory start from the opposite assumption to that in § 13.11, 
namely, it is supposed that there are no collisions or, if there are any, their 
effects are neglected. ; This postulate alone is not enough to bring about a 
sufficient simplification of the problem and another assumption is needed. 
The one made is to say that the magnetic field is so strong that the radii and 
periods of the gyromagnetic orbits of all particles are much smaller than any 
distances and times, respectively, of interest. In place of the three hydrody­
namic equations (§13.12), the nonequilibrium theories either utilize directly a 
form of the Boltzmann distribution equation applicable to charged particles 
in which the collision term is disregarded [19-21], or they take averages over 
individual orbits which lead to results essentially equivalent to the Boltzmann 
equation [22,23]. 

13.40. The so-called collisionless Boltzmann equation* may be written as 

¥t + v·vj +;; [E + ~ (v X B)] . Vvj 0, (13.16) 

*Some workers in the field refer to this as the Liouville equation, since the latter has 
no collision term. However, it seems preferable to USe the expression Hcollisionless 
Boltzmann equation" to imply that the Boltzmann equation is "cofl'ect," but collisions are 
being ignored as an approximation in order to simplify the treatment. 
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where the distribution function f, which is really f(x, v, t) is defined so that 
f83x8:1 is the number of particles in the volume element 83X and in the velocity 
range v83 at position x and velocity v in the six-dimensional (position-velocity) 

V
phase space at time t; the symbols e and m represent the charge and mass 
of the particles and V v is the gradient operator for differentiation with respect 
to the components of the velocity vector rather than with respect to the space 

coordinates [24, 25]. 
13.41. In order to obtain equations for the mass and momentum balance, 


the zero- and first-order moments of the Boltzmann equation are derived by 

multiplying equation (13.16) by mdv and mvdv, respectively, and integrating 

over all velocity space. Utilizing the Maxwell relationships, as in §13.13, 

the results are found to resemble formally equations (13.1) and (13.2) of 

hydrodynamics, except that the gradient of a scalar pressure, i.e., VP, in the 


latter is replaced by the divergence of a pressure tensor. 
13.42. A difficulty arises in connection with the development of the second-

order moment of equation (13.16) to yield an expression for the energy 
balance. This introduces third moments of the distribution function which 
are the components of the heat flow vector. In ordinary hydrodynamics, 
use is made of the fact that, as aresult of collisions, the distribution" function 
is Maxwellian (or nearly so) in form. The third moments can then be related 
to the second moments and the equations can be closed. In addition, the 
heat flow is often so small, because of frequent collisions, that it can be 
neglected; in this event, the result reduces to the same form as the adiabatic 

equation (13.3). 
13.43. In applying the situation to a plasma, however, the neglect of 

collisions makes it impossible to obtain closed equations because the heat flow 
terms cannot be evaluated. The simplest way of dealing with the situation 
is arbitrarily to cut off the energy balance equation at the third moment, which 
is equivalent to assuming no heat flow. The equations noW form a closed sys­
tem. The postulate of a strong magnetic field (§13.39) means that it is 
necessary to distinguish only between the components Pn and P1. of the pres­
sure tensor. As a result, the single adiabatic law, which can be written as 

d(p/p'Y) /dt == 0, is replaced by 

Q.(~) = ° dt p3 

and .4(E.1.)-pB ­dt 0, 

where the d/dt is the hydrodynamic operator defined in §13.12. 
13.44. !fhe nonequilibrium theory outlined above has a serious defect, 

since it artificially suppresses heat flow under collisionless conditions when 
thermal transport along the magnetic lines " is expected to be considerable. 
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Nevertheless, the theory has led to some new results of interest. One of 
these, which is typical of nonequilibrium theories, arises from a consideration 
of the simple case of a plasma having initially uniform pressures P II and P1. 
and density po in a uniform field Bo. By solving the problem of plane waves, 
it is found that exponentially growing waves are possible. In other words, 
instability may occur even in a plasma with a uniform distribution. The 
condition for stability is 

P1.2 Er 
6(p1. + B2/87r) < Pn < P1. + 47r' 

where Pl. and PII are the respective undisturbed values; hence, for stability 
of the plasma, PII must lie within the range indicated [26]. A slightly more 
restrictive stability condition, which takes heat flow into consideration, may be 
written in the analogous form [27] 

~ B2 
Pl. + B2/87r < Pn < P1. + 47r' 

13.45. An interesting new general result derived from a more elaborate 
nonequilibrium theory is that the Maxwellian velocity distribution leads to 
the most stable state and that deviations from this distribution, if sufficiently 
great, can in themse'lves cause instability. A particular case arises when PI! 
and P1. are unequal. 

13.46. In addition to the foregoing conclusions, some other interesting 
features of nonequilibrium theories will be noted. First, it may be mentioned 
that it has been found possible to develop an energy principle, analogous to 
that described in §13.21, based directly on the collisionless Boltzmann equa­
tion [28]. An essentially equivalent principle has also been derived by sum­
ming over the orbits of individual particles [23]. These theories lead to the 
important result that, if PII and P1. are initially equal, then the 8W predicted 
is at least as large as that obtained from the simple hydromagnetic theory, 
as given by equation (13.13). This means that, when stability is predicted 
on the basis of the energy (or variational) principle in hydromagnetic theory, 
the conclusion can be accepted with confidence in many cases. The utility 
of the simple theory would thus appear to be greater than its numerous defi­
ciencies would suggest. 

13.47. All three energy principles mentioned so far are applicable only to 
states of static equilibrium of the system as a whole. If the plasma is in a 
steady state of motion, e.g., if it is rotating, the kinetic energy of this motion 
is an additional source from which an instability might be driven. What this 
means mathematically is that, in linearizing equation (13.2), or its equivalent, 
it is not permissible to neglect terms arising from p (v' V ) v. 

13.48. A method has been developed for handling the problem arising when 
the plasma is in motion, by assuming a strong magnetic field and no collisions 
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[20,29, 30]. The results lead to linearized equations of motion, i.e., to normal 
mode equations, rather than to a variational principle. This means that the 
treatment is very difficult to apply to anything but the simplest geometry, al­
though it may be amenable to machine calculations in other cases. 

APPENDIX A: APPLICATION OF THE VARIATIONAL PRINCIPLE 
TO A PERFECTLY DIAMAGNETIC PLASMA 

13.49. In the following treatment it will be shown how the variation prin­
ciple (or 8W-formalism) has been applied to determine how the stability of 
a perfectly diamagnetic plasma confined by a magnetic field depends on the 
direction of the curvature of the vectors of the field lines [4]. Starting with 
the basic equation (13.12), with 8W defined by equation (13.13), some general 
results will first be derived, and then they will be applied to the case of im­
mediate interest. 

13.50. The integral for 8W can be transformed by partial integration uti­
lizing the relationships 

- ~. V X Q X Bo = Q2 + V· [Q X (~ X Bo)] 
and 

-~·Vbpv·~ + ~'Vpo] = 'YPo(V· ~)2 + (V· ~)(~·Vpo) - V' bpo~v, ~ + ~(~·VPo)]. 
It follows, therefore, that 

1 r 1
QW = QW! - 2Js (n'~)bpov·~ + ~'Vpo - 471" Bo·Q] ds (13.17) 

where QW! is defined by 

Q1V! == fv[ ~; - j. Q X ~ + 'YPo(V .~)2 + (V, ~)(~'Vp) ] d3x, (13.18) 

and ds is an element of surface; the integral in equation (13.17) is taken over 
the surface of the plasma whereas that in equation (13.18), as in equation 
(13.13), is over the volume. 

13.51. In normal laboratory experiments, the "vacuum" outside the plasma 
usually contains enough particles to conduct current, even if it will not produce 
a pressure; hence, the plasma boundary lies on the conducting walls, where 
(n'~) = 0, the symbol n representing the unit vector normal to the surface; 
the surface integral then contributes nothing. In idealized cases, however, 
where a perfect vacuum exists or when the walls are nonconducting, the 
surface integral must be evaluated. This is best done by using boundary con­
ditions to simplify the integral. 

13.52. The first step is to calculate the vacuum fields; these are indicated 
by a circumflex. The electric field is given by 

E = Eo + E' = E', 
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since Eo = 0, and the magnetic field is 

B = Bo + B'. 

The perturbations E', ~, together form an electromagnetic field and are there­
fore derivable from a potential. Thus, if A represents a vector potential,
then 

B' = V X A (13.19)and 

1 aA iQE'= --.-- - A,c at c (13.20) 
and A. satisfies the equation 

V X V X A = O. (13.21) 
No scalar potential is necessary as no charge accumulations are assumed. 

13.53. Next, the boundary conditions will be derived. In the first place, 
the magnetic field must be tangent to the plasma-vacuum interface. That 
this is true for the interior field follows directly from equation (13.6). The 
condition on the vacuum field is 

n·B' = n·V X (~ X Bo). (13.22) 

The second condition follows from the assumption of perfect conductivity: 
to an observ~r moving with the interface, the tangential component of the 
electrical field is zero. Transcribed into the laboratory frame, this condition is 

n X [ E' + ~ (v X Bo) ] = n X [ t, + ~ (v X So)J 
But 

E' + -1 
(v X Bo) = 0,c 

therefore 

n X A = - (n· ~)Bo. (13.23) 

The third boundary condition is that the total pressure, P + B2/8'7r, must be 
continuous across the boundary, as otherwise infinite acceleration would result. 
This condition can be written 

+ 0 + (Bo + OB)2 _ (:80 + QB)2
Po P '"'71" - 871" 1 

together with the equilibrium equations 

Po + B02 _ B02 
871" - 871" • 

Upon subtraction,. the result is 

1 1......op + - Bo·QB = - Bo.QB.
471" 471" 



502 CONTROLLED THERMONUCLEAR REACTIONS 

In these equations ap means the change in p resulting from the displacement 
over ~; the significance of aB is similar. In each" case the change is computed 
moving with the displacement. It follows then that 

~p = p' + ~·vp 
~B = B' + (~·v)B, 

and when these are used together with equation (13.7) for p' and equation 
(13.6) or (13.19), for B' or E', respectively, there is obtained the condition 

1-'YPoV·~ + 411" Bo' Q = 411" Bo'V X A + 811" (~'V)[1102 - B02]. (13.24) 

13.54. Returning now to equation (13.17) and setting equation (13.24) 


into the surface integral, it is found that 


" 1 1 { [ - ] ... }B02 80
2 

oW - ~WI = - 2 8 (n·~) (~'V) po + 811" - 411" Bo'V X Ads. 

Since both Bo and jo are paranel to the interface, the tangential derivative of 
2B02 - 80 • 

po + 811" vamshes, and so 
2B02 - 80 ] [B02 - 11

02J
E·V po + 811" = (~·n)n·V po + 811" .[ 


Furthermore, from the boundary condition equation (13.23), 


/8411" (n'E)13o'V X Ads = - /8:11" (n X A)·V X Ads 

= - /8 :11" n· (A X V X A) ds. 

Finally, this may be transformed into a volume integral taken over the vac­

uum region; thus, 

J1'" f 1411" (n·~)Bo·V X Ads V 411" v·[A X V X A] d
3
x 

= /v ;11" [(V X A)2 - A X V X V X AJ d
3 x. 

Combining these results, and making use of equation (13.21), it follows that 

~W = ~lVI + ~Ws + ~Wv, 
where ~WI is defined by equation (13.18) and 

1 f [B02 - 80
2 

] (13.25)oW8 = - 2 8 (n· ~)2n . V po + 811" ds 

and 
(13.26)~W.v = j" 1.. (V X A)2 d3x = f [(8')2J d3x. 

v 811" V 811" 
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It will be recalled from §13.21, that the condition for stability of the plasma 
is that 8W be not negative for every ~ which satisfies the boundary conditions. 

13.55. By means of the results derived above, it is now possible to determine 
the conditions of stability of the perfectly diamagnetic plasma confined by 
a magnetic field. First, it should be noted that if Bo = 0, then Q 0 and Po 
is a constant, so that equation (13.18) becomes 

~WI = ! Iv ')'po(V . t)2 d3x ? O. (13.27) 

In fact, aw, may be minimized to zero, by choosing ~ divergenceless, without 
compromising the freedom to choose (~'n) arbitrarily. 

213.56. Pressure balance requires 13 0 to be constant on the surface; thus, 
writing 

Eo = fJOT, 

where T is a unit vector in the fJ direction,so that 

V(80
2

) = 2fJo2 (T·V)T. 

Consequently, equation (13.25) for 8Ws may be written as 

2 h~Ws = -fJ
o

(n·t)2(n·K) ds (13.28)811" S ' 

where K is the principal curvature vector*" defined by 

K == (T·V}r. 

Because fJ 02 is constant over the surface, it follows that K is normal to the 
surface, and 

1
n·K = ±-,

R 

where R is the principal radius of curvature of the fJ line through the point in 
question, and the sign depends upon whether K points outward or inward from 
the surface. It will be apparent that if K points outward, the integrand of 
equation (13.28) is everywhere nonnegative. Since 8Wvis certainly not nega­
tive, the system is stable. 

13.57. Suppose, now, that over some region K points inward. The value of 
(~.n) will be chosen so as to .Vanish outside the given region. In order to treat 
this region, it is convenient to introduce orthogonal, curvilinear coordinates 

2
(ut, u , US), so chosen that fJ1 =0 everywhere and, further, that fJs =0 
on the surface. Thus the surface is a u1 surface and on it 13 points in the 

2 
u direction. Over the region being considered it is postulated that 

(n . t) = sin aX2' sin fha, (13.29) 

*This is one of the Frenet formulae [31]. 
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where Xi is defined by 
Xi == Ihidui

, 

so that the Xi are arc lengths along the i curves. 
13.58. In order to calculate 8Wv, it should be noted that, since tv is curl-

free, it is possible to write 
Ht = -V<I> 

and, therefore, 
1 

oWl" = 81r Iv (V<I»2 ds. 

This is minimized by choosing <I> to satisfy the equation 
(13.30)V 2<I> 0 

and as a result of this choice it is possible to perform a partial integration 

which yields 
(13.31)oWl" = - ;1r Is (n·V<I»<I> ds. 

13.59. In the postulated coordinate system, the boundary condition equation 

(13.22) 	becomes 

hl 1'\ (~l) 1
-(n.V<I» = -D082 - = - 8l <I>,
h2 hl hi 

so that on the surface, <I> has the form 

1 B . (13.32)ht 81<I> = - 00; cos o;X2 'sm !3xa + a. 

Solving the Laplace equation with this boundary condition yields 

(13.33)<I> = Bo ~cos o;x2 ·sin !3Xs·e-'Y"X.1 + a 
')' 

where (13.34)
')'2 = 0;2 +~. 

Here the symbol a represents terms of the order of curvature divided by 

IX or (J. 
13.60. The use of equation (13.29) now yields 

A132 
oWs = ----:=,

321rR 

where A is the area over which (n'~) is not equal to zero and R is the average 
radius of curvature over this area. Similarly, equations (13.32) and (13.33) 

give 

A132 . ~ + a,
oWl" 321r ')' 
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so that 

oW = A132 [~-1+a'-J.
321r ')' R 

Choosing a as small as possible, that is, of the order of the reciprocal length 
2 

of the region A, and {J very large, the terms-
a + at may be made as small 
y 

as desired. Hence, 8W Can be made negative and the system is unstable. 

APPENDIX B: NORMAL MODE ANALYSIS OF THE PINCH 

WITH SHARP BOUNDARY 


13.61. As an illustration of the application of the normal mode procedure 
for determining the conditions of stability of a plasma, an idealized model 
of the cylindrical pinch will be considered. The plasma is assumed to be 
in the form of a cylindrical rod in the interior of which no current flows. 
There is, however, a magnetic field in the plasma; hence, in cylindrical co­
ordinates, the interior field has the form 

Bo (0, 0, Bz) ; Bz = constant, (13.35) 
where, as before, Bo is the equilibrium field vector. Outside the plasma, the 
most general field possible is assumed, namely, 

Bo = (0, 13{J, Jjz) 	 (13.36) 
Bz = constant 	 (13.37) 

136 bIr, 6 = constant. (13.38) 
As in Appendix A, a circumflex over a symbol indicates the value in the vac­
uum outside the plasma. The plasma pressure is constant, and so the normal 
mode equation (13.9) reduces to 

1fl2 t-p = V(')'pV·t) - 41rB X (V X Q), (13.39) 

the zero subscripts, indicating equilibrium quantities, having been omitted 
since this will cause no confusion. The three components of equation (13.39) 
represent the equations of motion which, together with the appropriate bound­
ary conditions, permit a solution of the problem. 

13.62. Because of the linear nature of the equations, the spatial component 
of the displacement vector may be analyzed into its Fourier components by 
writing 

~ = [~r(r)~{J(r)~z(r)J exp (imO + ikz). (13.40) 
When this is done it follows, from the definition of Q in §13.18, that 

Qr = ikBz~r (13.41) 

Q6 = ikBz~6 (13.42) 

1 imQz = -B" [ ~ 8r(r~r) + -;: ~// J. (13.43) 
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The individual components of equation (13.39) then give the following set of 
normal mode equations: 

- pU2~r = Or('YpV .~) - :; (orQz -c- ikQr) (13.44) 

im ( ) B z (im Q 'kQ ) (13.45)- pU2~0 = - 'YpV' ~ - - - z - ~ 0 r 41r r 
(13.46)- pU2~z = ike'Ypv . ~). 

The form of these equations suggests that the dependent variables be changed 
by introducing the new function '11 defined by* 

1 
i' == 'YpV'~ - -B'Q41r 

. ( B 2) [1 im ] (13.47)= 'YP + 4; -;: Or(r~r) + -:;: ~o + ik'Yp~z. 

In t.erms of iT, equations (13.44-46) may be rewritten, respectively, as 

(k:!z2 _ pU2) ~r = ori' (13.48) 

k2BzZ _ pU2) ~o = im i' (13.49)
( r4.1r 

(13.50)[ki:rz2 - pUz (1 + 4!~P) ] ~r = iki'. 

13.63. The values of ~r, ~o, ~z given by the equations (13.48-50) may now be 
set into equation (13.47). The result is a differential equation for iT; thus. 

02i' 1 oi' ( m2) (13.51)-+-.-- K2+- i'=0
or2 r or r2 

wher_e KZ is defined by 

2
 

k B
z
2 _ pU2 { 2 } 
 (13.52)KZ == 41r 1 + k 'YP . 

'Y + B z2 k
2
B z2 _ pU2 (1 + Bz2 )

P 41r 41r 41r'YP 

This, together with equations (13.48-50), which now define the ~i, is equiva­
lent to the original equations of motion. Equation (13.51) is a form of 
Bessel's equation for an imaginary argument [32] and the solution is 

(13.53)i' = Im(Kr). 

*The use of this procedure for solving equations 13.44, 13.45, and 13.46 is based on a 
suggestion made in connection with a similar problem by Reimar LUst (private com­
munication). It would seem to be applicable in many cases where there is no current flow 
in the interior of a plasma. 
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The constant K2, and therefore 0 2, is determined by the boundary conditions. 
For the vacuum field it is possible to write 

H' = -V<I>, 

and, representing 4> by 

<I> = <I>(r) exp (imO + ikz), 

Laplace's equation takes the form 

d2<I> + !. . d<l> _ (k2 + m2) <I> = 0 
dr2 r dr r2 , 

so that 
<I> = Clm(kr) + DKm(kr), (13.54) 

where C and D are constants, to be evaluated below. 
13.64. It will now be supposed that there is a perfectly conducting rigid wall 

of radius Ro located in the vacuum. * At this wall 

Clm'(kRo) + DKm'(kRo) = 0, (13.55) 

where the prime implies the derivative with respect to the argument. At the 
plasma-vacuum interface, where r = R, the boundary condition given by equa­
tion (13.22) becomes 

k[Clm'(kR) + DKm'(kR)] = i (kBz + ~ 130) ~r 
or, using equation . (13.48) , 

iK (kBz + !!! 130) 
CI '(kR) + DK '(kR) = r Im'(kR). (13.56) 

m . m k (k2Bl)-_pU2
41r 

From equations (13.55) and (13.56), it follows that 

iK (kBz + ; 130) Im'(KR)
C = . Km' (kRo) 


1m' (kR)Km' (kRo) - Km' (kR)Im' (kRo) 
 k (k~z2 _ pU2) 

iK (kBz + ; 130) Im'(KR) 
D = -Im'(kRo) 


1m' (kR)Km' (kRo) - Km' (kR)Im' (kRo) 
 k (k~z2 _ pU2) 

13.65. The boundary condition represented by equation (13.24) can be 
written as 

*In order to avoid possible confusion with the general coordinate r, the radii of the 
wall, and of the plasma will here be represented by Ro and R, respectively, instead of the 
corresponding lower-case symbols used in the main text. 
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-'1' = 4~ (kBz + ~ 130) q, + 8171" ~rar(Bz2 + B02), 

and upon setting in the values for'll, <1>, ~r, Be, and the expressions for the con­
stants C and D given above, the result is 

k2Bz2 2)
(~ - pn I m(KR) _ B02(R) 

471" KIm' (KR) - R 

+ ! (kB + ~ ~ )2 [Km'(kRo)Im(kR) - Im'(kRO)Km(kR) J. (13.57) 
k z r 0 Km' (kRo)Im' (lcR) - 1m' (kRo)K1,,' (kR) 

This is seen to be a dispersion equation which relates the frequency 0 of the 
waves to the propagation vector defined by 

k== (0, ~'k). 
13.66. The dispersion equation is transcendental and can be solved only by 

numerical means. If the values of 0 2 are positive then the system is stable, but 
if they are negative then it must be unstable. The actual determination of 
which configurations are stable and which are not is laborious, but it has been 
carried through and the results obtained were given in §13.27 et seq. 
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