Recent Progress in High Temperature Electrolysis

<u>J. Stephen Herring</u>, James E. O'Brien, Carl M. Stoots, Joseph J. Hartvigsen and Gregory Housley

Session 412 AIChE 2007 Salt Lake City, Utah November 7, 2007

The U.S. is becoming increasingly dependent on imports

Figure 6. Total energy production and consumption, 1970-2025 (quadrillion Btu)

US Petroleum imports today:

- 12 million barrels per day
- = 25 quad per year
- = \$800,000 per minute, 24-7

1 quad = a mile-long train of coal every 2 hrs, 24-7 for a year

Greenhouse Gas Emissions & Global Warming

- Controversial issue
- CO₂ atmospheric concentrations going up
- Earth's surface temperature going up

Source: Intergovernmental Panel on Climate Change

High Temperature Electrolysis Plant

Idaho National Laboratory

High Temperature Electrolysis: from Button Cells to the Integrated Laboratory Scale Experiment

10-cell stack (2004) 640 cm²

120-cell half-module (2006) 7,680 cm²

Button cell (2003) 3.2 cm²

Research Goals:

- Develop efficient solid-oxide electrolysis cells, building on solid-oxide fuel cell research
- Decrease cost, increase durability
- Determine reasons for long-term cell degradation
- Optimize plant designs
- Co-electrolyze CO₂ and steam to CO and H₂
- Develop designs to apply nuclear heat and H₂ to heavy petroleum and oil sand upgrading
- Integrate nuclear energy sources and fossil/biomass carbon sources for hydrocarbon synthesis

Idaho National Laboratory

CFD and Flowsheet Analyses

Temperature profile of cell

Process Flowsheet for Reactor-driven commercial plant

Integrated Laboratory Scale (operational 8-22-07) 720 cells, 3 modules (2008) 46,080 cm²

Idaho National Laboratory

Hot Zone of the HTE ILS

Comparison of nominal and extreme design cases

	Nominal Case	Extreme Design Case
ASR (ohm cm ²)	1.5	1.0
Current Density (A/cm ²)	0.25	0.37
Per-cell Voltage, V()	1.283	1.283
Electrolysis Power (kW)	14.54	21.8
Hydrogen Production Rate (NL/hr)	4735	7103

ILS 3D Model

Steam Input Lines

Components--

- Water Metering pumps
- Steam Generators
- Humidity Sensor Vessels
- Superheaters
- Purge Gas Nitrogen
- Reducing Gas Hydrogen

<u>Air Input Lines</u>

- Air Compressor
- Filter
- Mass Flow Controllers
- Air Heaters

<u>Hot Zone</u>

- Where Steam is converted to Hydrogen
- Houses 3 4-stack
 electrolysis modules
- Operating Temperature Range: 800 to 900°C

Fuel Cell Module

Hydrogen Outlet Lines

Hydrogen Outlet Lines

Power Electronics

Assembled ILS Components

Comparison of nominal and extreme design cases.

	Nominal Case	Extreme Design Case
ASR (ohm cm ²)	1.5	1.0
Current Density (A/cm ²)	0.25	0.37
Per-cell Voltage, (V)	1.283	1.283
Electrolysis Power (kW)	14.54	21.8
Hydrogen Production Rate (NL/hr)	4735	7103

Review of Experiment

Carl Stoots, Joe Hartvigsen and Jim O'Brien in front of the ILS skid as it begins

operation with a single module, September 25, 2007 Idaho National Laboratory

Total module current, A

Comparison of the hydrogen production rate as measured by the total current

and by the change in dewpoint.

HTE ILS Operating conditions, Sept. 26, 2007

	·	
	Steam generator outlet temperature	164° C
	Steam-superheater outlet temperature	812° C
	Air superheater outlet temperature	748° C
	Hot Zone Temperature	810° C
	H ₂ /Steam product outlet temperature	856° C
	Deionized water input	34.0 ml (liquid)/min
		42.3 normal liters (steam)/min
	H ₂ input	3.0 normal liters/min
	N ₂ input	5.4 normal liters/min
	Air input (as sweep gas)	25.0 normal liters/min
	Dewpoint at inlet to module	92.3° C
	Dewpoint at outlet from module	72.1° C
	Module Voltage	78.7 V
	Module current	51.7 A
	Intermediate voltages of groups of 5 cells	6.0 V - 6.8 V
	Temperatures at top of module	
	Stack 1	816.8° C
	Stack 2	822.5° C
	Stack 3	818.3° C
	Stack 4	830.7° C
	Bottom of module	828° C
Idaho National Labor	H ₂ production rate	22 normal liters/min
	uluy	1.32 normal m ³ /hour

Conclusions

- Conventional electrolysis is available today
- High temperature electrolysis is under development and will be more efficient
- HTE Experimental results from 25-cell stack and 2x60-cell half-module, fabricated by Ceramatec,
 - Hydrogen production rates in excess of 160 normal liters/hour were maintained with a 25-cell solid-oxide electrolysis stack for 1000 hours
 - Hydrogen production greater than 800 normal liters/hour was achieved in the half-module test for a 2040 hr test
 - An Integrated Laboratory Scale experiment is now being build, has produced 1320 normal liters/hour and is designed for >5 normal m³/hour
- In the near-term hydrogen from nuclear energy will be used to upgrade crude and later to synthesize conventional gasoline and diesel fuel from renewable carbon sources
- In the long-term pure hydrogen from nuclear energy may power vehicles directly through fuel cells

