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Inertial electrostatic confinement (IEC) systems are predicated on a nonequilibrium ion distribution 
function. Coulomb collisions between ions cause this distribution to relax to a Maxwellian on the 
ion-ion collisional time scale. The power required to prevent this relaxation and maintain the IEC 
configuration for times beyond the ion-ion collisional time scale is shown to be greater than the 
fusion power produced. It is concluded that IEC systems show little promise as a basis for the 
development of commercial electric power plants. 0 I995 American institute of Physics. 

I. INTRODUCTION 

Inertial electrostatic confinement (IEC) is a concept from 
the early days of fusion research. Work on magnetic confine- 
ment fusion in the Soviet Union was begun by Sakharov and 
others in response to a suggestion from Lavrent’ev that con- 
trolled fusion of deuterium could be achieved in an IEC 
device.’ The concept was independently invented in the 
United States by Famsworth.2 Inertial electrostatic confine- 
ment schemes require the formation of a spherical potential 
well. Low-energy ions are injected at the edge and allowed 
to fall into this potential well. If the ion injection energy is 
low, the ions have a low transverse energy, low angular mo- 
mentum, and must pass near the center of the spherical po- 
tential well on each transit. The repeated focusing of the ions 
at the center of the well results in peaking of the fuel density 
and greatly enhances the fusion rate relative to what would 
be achieved in a uniform plasma of the same volume and 
stored energy. This strong ion focusing at the center of the 
potential well is the defining feature of IEC schemes. The 
plasma configuration envisioned by proponents of IEC fu- 
sion systems is illustrated in Fig. 1. 

Early spherical electrostatic traps2-4 required grids to 
produce the confining potential. Calculations of grid cooling 
requirement? indicated that this concept would require a 
grid radius greater than 10 m to achieve net energy output, 
leading to an impractical reactor. It was suggested that the 
concept could be improved by using a magnetic field to 
shield the grid from the hot plasma; and in the Soviet Union 
the concept evolved into an investigation of electrostatically 
plugged cusps (see Ref. 6 for an excellent review of this 
tleld). In this evolution from a purely electrostatic confine- 
ment scheme into a .magnetoelectrostatic-confinement 
scheme it appeared that a key advantage had been lost-the 
confining magnetic field lacks spherical symmetry so the 
strong ion focus is lost within a few ion transit times because 
the angular momentum of the ions is not conserved in the 
absence of spherical symmetry. 

Recently, there has been a resurgence of interest in elec- 
trostatic confinement fusion. Two new concepts for forming 
the spherical potential well that do not involve internal grids 
have been proposed-the PolywellTM and the Penning trap. 
In a Penning trap a spherical effective potential well is 
formed in a rotating frame by a combination of electrostatic 

and magnetic Iields.7 In the PolywellTM configuration,*-” a 
polyhedral magnetic cusp is used to confine energetic elec- 
trons. The space charge of these magnetically confined eiec- 
trons then creates a potential well to confine the ions. 

In estimating the importance of collisional effects on an 
IEC fusion reactor, we will use the parameters in Table I. 
These parameters generally follow those suggested by 
Bussard’ and KralLto We have adjusted the operating point 
somewhat to take account of our more accurate calculation 
of the fusion reactivity (see Sec. III) and to ensure that the 
projected operating point is consistent with the model de- 
scribed in Sec. II. We assume a deuterium-tritium (DT) 
fueled IEC reactor because the power balance is most favor- 
able with this fuel, and we find power balance to be the 
critical problem. 

In this work a perfectly spherical potential is assumed, 
thus assuring that the ion focus can be maintained over many 
ion transit times (about 1 ,zs for the IEC reactor parameters 
of Table I). Ion-ion collisions act on a substantially longer 
time scale. The ion focusing that defines IEC systems is as- 
sociated with a strong anisotropy in the ion distribution func- 
tion. Ion-ion collisions tend to reduce this anisotropy on the 
ion-ion collisional time scale (about 1 s for the IEC reactor 
parameters of Table I). It is possible to maintain this non- 
equilibrium ion distribution function with sufficient recircu- 
lating power. The object of this paper is to compute the col- 
lisional relaxation rates and estimate the recirculating power 
required to maintain an IEC reactor beyond the ion-ion col- 
lisional time scale. 

Proponents of IEC systems often assume an ion distribu- 
tion function that is nearly monoenergetic.2’9-” There is not 
a necessary connection between maintaining the ion focus 
(which results from the dependence of the ion distribution 
function on angular momentum) and the variation of the ion 
distribution function with energy. However, some proponents 
(see especially Ref. 9) believe this to be a second key feature 
of IEC systems because of the substantial increase in the 
fusion rate coefficient for a monoenergetic distribution rela- 
tive to that of a thermal ion distribution (but see Sec. III, 
where it is shown that this increase is not significant). 

Our approach in analyzing IEC systems is to develop a 
simple model that contains the essential features described 
by proponents of IEC systems (electrostatic confinement, 
strong ion focusing, and a monoenergetic ion distribution 
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FIG. 1. The IEC plasma is divided into three regions: a dense plasma core, 
a bulk plasma where the density falls approximately as l/r*, and a cold 
plasma mantle where the ions are reflected from the edge of the potential 
well and the mean ion kinetic energy is low. 

function); and then to use this model as a basis for the cal- 
culation of collisional relaxation rates, estimates of the fu- 
sion power produced by the systems, and the auxiliary ppwer 
required to maintain the nonequilibrium IEC configuration. A 
successful IEC device must maintain a high convergence ra- 
tio, n/r”. We find .this to be a useful ordering parameter, and 
use it freely to identify leading terms in the collisional relax- 
ation rates and power balance. 

In Sec. II we present a model IEC ion distribution func- 
tion and show that it reproduces the central features envi- 
sioned by proponents of IEC systems. In Sec. III we compute 
the averaged fusion rate coefficient for this distribution and 
show that it is not substantially greater than that for a Max- 
wellian distribution with similar mean energy per particle. In 
Sec. IV we compute the collisional rate of increase in the 
angular momentum squared (L’) (which determines the rate 
of decay of the ion focus), and the collisional rate of increase 
in the energy spread of the ion distribution resulting from 
collisions in the plasma bulk and core between ions with 
large relative velocities. In Sec. V we compute the collisional 
rates of change in (L2) and energy spread due to collisions in 
the plasma bulk between ions with small relative velocities. 
Assuming that the ion distribution is initially strongly fo- 
cused and nearly monoenergetic, this analysis indicates that 
the instantaneous rate of relaxation toward a Maxwellian is 
(alru) Vii, where rO is the radius of the ion focus, a is the 
radius of the bulk plasma, and Vii is the ion-ion collision 

TABLE I. Reference IEC reactor parameters. 

QUCUltity Symbol Value 

Potential well depth 
Plasma radius 
Core radius 
Volume-averaged density 
Peak ion density 
Fusion power 

4% 
n . 

2) 
ni0 

Pfmion 

SO.7 keV 
Im 
1 cm 
0.5X 10” me3 
3.3X10z3 mm3 
590 Mw 

frequency evaluated at the volume-averaged density. The ion 
focus degrades progressively, so that it takes a time of order 
vii1 to complete the relaxation to an isotropic Maxwellian. 
Clearly, some intervention is required if the nonthermal ion 
distribution is to be maintained beyond the ion collisional 
time scale. In Sec. VI we analyze two schemes proposed by 
proponents of IEC systems,g71’ and conclude ‘that they will 
not be. effective in maintaining the nonthermal ion distribu- 
tion function. In Sec. VII we examine schemes for maintain- 
ing nonthermal ion distributions that rely on controlling the 
lifetime of ions in the electrostatic trap. We find that these 
schemes require the recirculating power be greater than the 
fusion power. We conclude that IEC devices show little 
promise as a means for generating electric power. However, 
they may be useful as a means of generating 14 MeV neu- 
trons for other applications. 

II. THE MODEL 

Two constants of the single-particle motion for an ion of 
species “s” in a spherically symmetric trap are the total en- 
ergy* 

e=1/2m,u”+q,&); 0) 

and the square of the particle’s angular momentum, 

L2=(m,vXr)“. (2) 

We consider weakly collisional systems, in which the 
collision frequency (v) and fusion rate (FZ~~ (crr~)~r) are small 
compared to the transit frequency (We), in the electrostatic 
well. At leading order in ulw, , the ion distribution function 
is then a function of the single-particle constants of motion.- 
We assume an ion distribution function of the form 

j;=fs(k,L2). 

The particle density at radius r is then given by 
(3) 

n,(rj=r de dL2 
J(ur ,u:, 
a( E,L2) f,(d)? 

where the Jacobian between velocity space and (e,Lz). space 
is 

Gw:> T 
rr a(E,L2)’ = mk~r2u, (5) 

and 

&.(E,L2)= JN. .= -i) 

We consider ion distributions that are nearly monoener- 
getic and strongly focused at the center of the sphere (i.e., 
distributions with low angular momentum). An ion ~&stribu- 
tion function with these properties is 

(7) 

where C, is a constant (to be evaluated below) and H(x) is a 
Heaviside function. 

In our calculations we consider a “square-well” poten- 
tial, 
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impurities), and that deuterium and tritium distribution func- 
tions have the same convergence ratio, so that 

n~(r)=nd(r)+n,(r)=2n,(r)=2n,(r). (15) 

If the fusion rate coefficient, (ou)nr , were independent of 
radius, then the fusion power would be given by 

A substantial confining potential (f ho) is assumed in order 
to ensure that the dominant collisional effect is thermaliza- 
tion of the ion distribution, rather than ion upscatter (in en- 
ergy) followed by loss from the potential well. The ion num- 
ber density corresponding to our model distribution function 
is 

n- 
n,(r)= 

de,3,2, s r 

xC,G(E)H(Lg-L2), (8) 

c l* r<ro, 
=ns()x 

i 

r2/r2 0 
r>r0, 

(9) 
1+$7$7’ 

where nso- =2rrv,C,lm,, v, = $&&& L,=mv,r, and 
ro=Lolmsv,. 

We evaluate the constant C, by noting that the total 
number of ions in the trap, N, , is given by 

N,= a 
I 

471-r2 dr n,(r) 
0 

4rra3 
= 3 nso[ 1 - ( 1 - r$a2)3’2] 

-27rr~anso (ro+a). 

Hence, the central ion density, nso, is 

(11) 

N, 2a2 
nso~~~~ r. i 1 

- (4bl~ (12) 

where (n,)Vol~N,IV is the volume-averaged density, and 
V=4r/3a3 is the volume of the trap. The corresponding 
value of C, is 

c,- msNs 
4rr2riav,’ (13) 

Restricting the ion distribution function to low values of 
angular momentum, ~L~~LO=msu,rO, has the effect of in- 
creasing the central ion density relative to what it would be 
for an isotropic ion velocity distribution by the factor 
0.67(alro)2. We conclude that the model IEC ion distribu- 
tion function of Eq. (7) reproduces the essential features of 
inertial electrostatic confinement schemes-electrostatic 
confinement, strong central peaking of the fuel ion density, 
and a monoenergetic energy distribution. 

III. FUSION POWER GENERATION 
mdmt m=------- 

r md+rnt’ (221 

For a deuterium-tritium plasma, the total fusion power while the subscripts “d” and ‘9” label the ion species, deu- 
is given by terium and tritium. 

We have evaluated the ,u integral numerically using an 
analytic fit to the center-of-mass fusion cross sections devel- 
oped by Bosch and HaleI (which is accurate to within 2% 
over the relevant energy range), We find significant variation 
in ( ~u)nT with both radius and potential well depth. The rate 

Pfusion=Y~~ 
I 

d3r 4rh(r)(uu)DT(rl, (14) 

where Yn,= 17.6 MeV is the fusion yield per event. We as- 
sume an equal mixture of deuterium and tritium (with no 

~fw.ion=~ YDT(wU)DT d3r a:(r) 

2%- 
-~r&~oYDT(cv)DT 

where we have used the fact that, for the model distribution 
described in Sec. If, 

4?r 
d3rnf(r)-yr&fo (17) 

This motivates the definition 

(m)$= Pfusion 

$YDTJd3r n:(r) ’ 
(18) 

The radial dependence of the fusion rate coefficient 
arises because, even for monoenergetic distributions, the fu- 
sion rate has to be averaged over the angle between the col- 
liding particles. This angular distribution varies as a function 
of radius. For the model described in Sec. II the angular 
distribution function g(p) is isotropic within the core (i.e., 
for r<ro), while outside of the core (r>r,,) the angular dis- 
tribution [normalized such that Jg(,u)dp=l] satisfies 

1 

g(p)= 2&p 

1 

IpI> G-$3 
09) 

0, I/.&[< l/i-Tp, 

where lu. is the cosine of the angle between the ion velocity 
and the unit vector in the radial direction, 6,. 

The averaged fusion rate coefficient for an ion with zero 
angular momentum (Le., an ion for which ,u= % 1) colliding 
with background ions described by the model IEC distribu- 
tion is 

where the relative velocity u, satisfies 

7J&L)=u~-2pu~u,fu~, (21) 

the center-of-mass energy is given by Ecm=$m,.v~, and the 
reduced mass by 
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0.6 

<ov> x10- 21m% 

o. (kV) , E = 3/2 Ti (keV) 

FIG. 2. Effective fusion rate coefficient for DT and D3He reactions versus 
the potential well depth, q$. The kinetic energy of each particle is q& _ The 
corresponding Maxwellian-averaged rate coefficients, plotted against the 
mean ion energy, r= $ T, are shown for comparison. 

We conclude that significant increases in the power den- 
sity of an IEC system relative to other confinement systems 
result from the choice of a higher mean ion energy at the 
projected operating point and from the strong central peaking 
of the ion density associated with the anisotropic ion distri- 
bution function assumed by proponents of IEC systems. 

IV. COLLISIONAL RELAXATION OF THE ION 
DISTRIBUTION FUNCTION 

coefficient in the core (r=G ro) is that of an isotropic, monoen- 
ergetic distribution, as previously evaluated in this context 
by Miley et al.13 and Santa&s et aLI4 In the bulk region 
(ro< r <a), the rate coefficient rapidly approaches that of 
two counterstreaming beams, as considered by E3ussard.g 

In evaluating the total fusion power, one should integrate 
over the angular distributions of both incident ions. The rate 
coefficient of Eq. (20) is averaged only over the angular 
distribution of one of the incident ions. However, it repro- 
duces the correct result for rGro (where both ion distribu- 
tions are isotropic), and for rZ2r,, where the dominant con- 
tribution to the rate coefficient comes from counterstreaming 
ions. Hence, only a small error is introduced by replacing 
this second angular average with its value for L”=O. Using 
this approximation, we have evaluated the effective rate co- 
efficient, as defined in Eq. (18) as a function of the potential 
well depth for both DT and D-“He reactions. These results 
are displayed in Fig. 2, together with corresponding Max- 
wellian-averaged rate coefficients. 

The strong focusing of ions at the center of the well is 
the defining feature of IEC systems. This focusing leads to a 
substantial enhancement of the total fusion power at fixed 
stored energy. The total fusion power within our square-well 
model, 

1 
f'fusion=z YDT 

I 
* d3r nfCr)(av>&r) 

2 

VYD+v);;, 

In computing the effective rate coefficients, (au):: , 
displayed in Fig. 2, we have assumed that the kinetic energy 
of the incident ions “s” and “s”’ are given by 4s$o and 
~~1 tioo, respectively, because we find no advantage in choos- 
ing the energy of the heavier ion to be smaller than that of 
the lighter ion by the ion mass ratio (an ordering of the ion 
energies was recommended in Ref. 10 as a means of mini- 
mizing the energy diffusion resulting from collisions in the 
“bulk” region, ro<r<a). This issue is discussed further in 
Sec. IV. 

is enhanced relative to what would be obtained with an iso- 
tropic ion distribution function (for which ni=(ni)vJ by the 
factor (8/9)alro. This enhancement results from the central 
peaking of the ion density, which, in turn, depends critically 
on maintaining a strong anisotropy in the ion distribution 
function [i.e., ensuring that f,( e,L2) goes to zero rapidly for 
L2>(m,v,ro)‘]. Hence, it is important to examine effects 
that will tend to reduce this anisotropy in the ion distribution 
function. 

The Maxwellian-averaged fusion rate coefficients dis- 
played in Fig. 2 were computed following Bosch and Hale.12 
The monoenergetic IEC rate coefficient ((Tv)$ has a peak 
value of 0.90X lo-” m3/s at a potential well depth +o=S0.7 
kV, while the Maxwellian-averaged fusion rate coefficient 

Ion-ion collisions are an obvious mechanism for reduc- 
ing the ion anisotropy. It follows from the Boltzmann H 
theorem that ion-ion collisions will drive the system to an 
equilibrium in whichf~Y( E, L2) -exp(- E/T). That is, to a state 
in which there is no ion anisotropy, and the only variation in 
the ion density arises from variations in the potential, such 
that n,(r)-exp[-q,& r)lT]. If the ion distribution function 
is allowed to relax to thermal equilibrium the key advantage 
of IEC systems (enhanced fusion power at fixed stored en- 
ergy due to strong density peaking) is lost. However, ion 
collision rates are low (of the order of 1 Hz) at the energy 
and densities projected for IEC reactors. Hence, the power 
required to maintain a nonequilibrium ion distribution func- 
tion might be less than the fusion power produced. In order 
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(uu>E. has a peak value of 0.89X lo-‘l m3/s at a mean ion 
energy E= 113 keV (or T, =75 keV). The monoenergetic IEC 
rate coefficient for D3He, (a~>& has a peak value of 
2.8X10-” m3/s at 40=140 kV. Miley” reports a maximum 
value in the Maxwellian-averaged D3He rate coefficient, 
<ffvg?$,= 2.5 X 1 O-22 m3/s at a mean ion energy E=375 
keV (or Ti=250 keV). The somewhat larger difference 
(about 11%) between the peak in these averaged rate coeffi- 
cients is similar in magnitude to the change in the D3He rate 
coefficient associated with the improved parametrization of 
the fusion cross section developed by Bosch and Hale (see 
Fig. 22 of Ref. 13). We see that, despite claims to the 
contrary,9 the averaged rate coefficient for a monoenergetic 
IEC system is not significantly greater than the Maxwellian- 
averaged fusion rate coefficient at similar mean ion energies. 
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FIG. 3. Here I, ( ,uO .u) is displayed as a function of test particle speed (u) 
for b=O.995 (corresponding to r= 1 Or,,). The resonance at U= 1 results 
from self-collisions among comoving particles. 

to investigate this possibility we evaluate the collisional re- 
laxation rates of the ion distribution function. 

A. Collisional relaxation of ion anisotropy 

Coulomb collisions will result in an increase in (L2> due 
to transverse scattering (that is, scattering of the ion velocity, 
so that it has a component in the plane perpendicular to G,). 
In Appendix A we show that, in the limit L2-+0 (so that the 
ion velocity is nearly radial over most of its orbit), the col- 
lisional rate of increase in the mean-square transverse veloc- 
ity for ions of species s and speed 

J 
24850 USE - 

fn, 
is given by 

; (Ad)=247 @ ‘UJl(&,U,4, 
where 

(24) 

(26) 

following Book,16 we have defined 

sls,- 4~q,2q~rn,~LnA,,~ 
vo = 

Pn,‘u; 
(27) 

and 

(28) 

is the cosine of the angle between v and i, at which the 
model IEC distribution function goes to zero for the given 
radius. 

The variation of the collision integral ZL(po,u) with 
particle speed is shown in Fig. 3 for a typical location in the 
plasma bulk, r= 1 Or,. At each location in this region 
(ro<r=Ga) the ion distribution resembles two counter- 
streaming beams [see Eq. (19)]. The resonance at u = 1 (cor- 
responding to us= u,~) in Fig. 3 describes collisions between 
particles that are comoving in the same beam. Collisions 

I&0=0, u) 

FIG. 4. Here I, ( /Q .u) is displayed as a function of test particle speed for 
&=O, corresponding to radial locations in the plasma core, rs r,, . 

between comoving particles leads to strong coupling be- 
tween the transverse and longitudinal velocity dispersion of 
these bt%unS, as pointed out by Rosenberg and Krall.” We 
will return to this important effect in Sec. V. In this section 
we ignore the internal structure of these beams, focusing on 
the rate of increase in velocity dispersion due to collisions 
between ions in counter&earning beams. We remove the ef- 
fect of collisions between comoving ions from our represen- 
tation of the collision integral by replacing the collision in- 
tegral ZL(po ,u> with I:(,u~ ,u), which has been cutoff at 
,~,=0.95, as described in the Appendix. In the bulk region 
[where po= dm- 11, this modified collision inte- 
gral is well approximated by 

Lim[Zl(h,u)l= i A. 
I*o-+ 1 

The variation of ZI(,uo,u> with particle speed in the 
plasma core (6 ro) is shown in Fig. 4. 

At a given radius the collisional rate of increase in L2 is 
simply related to the collisional rate of increase in the trans- 
verse velocity dispersion, 

dL= 
dr collisions 

=m,2r2 f {AL&. (30) 

The rate of increase in L2 varies over the ion orbit. However, 
at the ion densities and energies projected for an IEC reactor 
the change in L2 due to colhsions during a single orbit is 
small. Hence, we average the collisional change in L2 over 
the ion orbit to eliminate the rapid time scale associated with 
ion orbital motion, and obtain the bounce-averaged rate of 
change in L2: 

(: L2),,,,isi,=~ I,” F ib ~lc,,isio”s- C31) 
The radial dependence of the transverse cohision inte- 

gral, Il[~(r),u), is shown in Fig. 5. Except for a small 
region about the plasma core (6 3ro), 1: is well approxi- 
mated by Eq. (29). Hence, the rate of increase in the trans- 
verse velocity dispersion depends on radius mainly through 
the ion density. We may isolate this dependence by multiply- 
ing and dividing by the ion density, and noting that the factor 
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FIG. 5. Radial variation in the transverse collision integral, I&~~(r),u] is 
displayed versus r/./r0 for a test particle with speed u=l. The structure at 
r/rO=I is associated with the cutoff in I{ at /+=0.95 applied for rlr$l. 

(~v~“lnj) is nearly independent of radius. Hence, we may 
approximate the bounce-average collisional rate increase in 
L” for ions of species s as 

v;‘= , 
collisions~m~u,2C 

5' 
n /,,~vs,~ 

s 

X (32) 

where 

~c&c%>w (33) 

c,- -? us bs+hJl’ (34) 

the sum on s ’ includes field ions of the opposite species 
streaming both parallel and anti-parallel to the test ions of 
species s; and L~=~m,u,a)2 is the value of (L’) for an 
isotropic, monoenergetic ion distribution-that is, an ion dis- 
tribution that yields a constant ion density throughout the 
trap. For a DT plasma we find cd=6.5 and c,=5.4. 

We were motivated to introduced the volume-average 
scattering rate, 

( vfqm,= 
4--dfluLn &d (n,,)~, , 

0 -j 
s s 

(35) 

because (assuming that the total number of ions is con- 
served) this rate is constant as the ion distribution function 
relaxes toward isotropy. It follows that the rate of increase in 
(L’) is independent of time, and that, even after taking credit 
for the central concentration of the ion density, the ion dis- 
tribution function relaxes to isotropy in a timer7 

1 
7sLs / 

443w’ 
(36) 

For the reference IEC reactor of Table I, this works out to 
d-69 ms. 

In the absence of particle sources and sinks, collisional 
effects define a minimum rate of at which the ion focus de- 

grades. The actual rate of degradation can be substantially 
higher. For example, asymmetries in the confining potential 
may occur due to the inherent lack of symmetry in the mag- 
netic fields needed to confine the electrons that generate the 
potential well,18 asymmetries associated internal or external 
electrodes, asymmetries associated with the apparatus that 
injects the ions into the trap, or due to waves and 
instabilities.lg Even very small asymmetries in the confining 
potential can substantially increase the rate at which the ion 
distribution function relaxes toward isotropy because they 
scatter longitudinal velocity into transverse velocity at a ra- 
dius r-a (so for a fixed hvl we generate the maximum 
change in L2); and because a “collision” occurs between 
each ion and the confining potential once each bounce pe- 
riod. Hence, we may estimate the rate of change in L2 due to 
asymmetries in the confining potential as 

$ (L2) w 1 
aSplXl~trieS 

-m .--.- 

i 1 .40 76’ 
(37) 

where “m” is the mode number and 84 is the magnitude of 
the asymmetry in the confining potential. For the 50 keV 
deuterons in the reference IEC reactor described in Table I, 
l/r,= 1.1 MHz, while ( vt’d)vol-2.23 Hz. Hence, the bounce 
frequency is larger than the collision frequency by a factor of 
7.6X 10”: Clearly, even very small asymmetries in the con- 
fining potential can lead to relaxation of the anisotropy in the 
ion distribution function at a faster rate than Coulomb colli- 
sions. 

B. Collisional relaxation of the ion energy distribution 

It is still important to examine the collisional relaxation 
of the monoenergetic ion energy distribution function be- 
cause the rate of thermalization in energy has important im- 
plications regarding the effect of collisions between comov- 
ing ions on the evolution of the ion anisotropy (see Sec. V). 

In the Appendix it is shown that the collisional rate of 
increase in the longitudinal velocity dispersion of ions of 
species “s” is given by 

f &“‘s=~ 4?‘u: $ ~,,h,,u,r)- 
The variation of the longitudinal collision integral with speed 
in the plasma core ( r<ro), is shown in Fig. 6. For us 1, 
I&po= 0,~) takes the same value ($) as the transverse colli- 
sion integral, I, ( ,LL~ = 0, m) . Hence, the collisional diffusion 
is isotropic in the core at low ion velocity (as expected for an 
isotropic distribution function), while pitch angle scattering 
(and drag, which is not treated here) are the dominant colli- 
sional effects for fast particles. 

Unlike the transverse collision integral, the longitudinal 
collision integral approaches zero in the bulk region (r> ro), 
where it may be approximated by 

1 (rolr)’ 
4[Po(r)~"l"~(1 +US,)3 (r%ro). c@) 

Bussardg noted that bulk collisions would not cause energy 
diffusion if the energy of the heavier ion species is smaller 
than that of the lighter ion by exactly the ratio of the ion 
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0.8 - I,,(cl*=OAJ) 
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FIG. 6. Here I,,(/.Q,,u) is displayed as a function of test particle speed for 
,q,=O, corresponding to radial locations in the plasma core, rare, 

masses (when this condition is satisfied the center-of-mass 
frame is nearly identical to the lab frame for collisions be- 
tween counterstreaming ions in the plasma bulk). The more 
general result of Eq. (39)-that collisions in the bulk plasma 
do not cause appreciable energy diffusion for any choice of 
the relative ion energies-follows from the assumption that 
the scattering angle is small (which is always the case for the 
dominant contribution to the Coulomb collision operator), 
together with the fact that, in the bulk plasma region, the 
velocities of the colliding particles are nearly colinear. For 
small-angle collisions the momentum transfer between the 
colliding particles can be obtained by treating the interaction 
as a perturbation, and integrating along the unperturbed (i.e., 
parallel, straight-line) orbits. When the impact parameter is 
finite (as required for small-angle collisions), it is easily seen 
that the momentum transfer (the time integral of the force on 
one particle due to interaction with the other particle) must 
be perpendicular to the particle velocities for any central 
force law. Hence, bulk collisions can produce pitch-angle 
scattering (as described by the transverse collision integral) 
but not energy diffusion, independent of the relative energies 
of the colliding ions. We conclude that only the plasma core 
contributes to the collisional increase in the longitudinal ve- 
locity dispersion. This is apparent in Fig. 7, which shows the 
radial dependence of I,; (p,, ,u). 

1.0 

0.8 

0.6 

0.4 

0.2 I 
4.0 6.0 

r/r0 

FIG. 7. Radial variation in the longitudinal collision integral, I,;[~~(r),u], 
is displayed for a test particle with speed u= 1. The structure at r/ro=l is 
associated with the cutoff in 1,; at p‘. =0.95 applied for r/r+ I. 

The bounce-averaged collisional rate of increase in the 
ion energy is 

(C)orbit= 2 I,” g $ $ (Au~>~ 
s s 

-F !fc J!2- I” d’ n,P(r)r,,[po(r),u,r, n,r Us’ 0 a 

(40) 

where 

We have computed the orbit integral numerically for a DT 
plasma with equal deuterium and tritium fractions, finding 
dp1.73 and d,=1.91. 

At constant ion convergence ratio (a/t-,), the ion energy 
distribution would relax to a Maxwellian in a time of order, 

(43) 

For our reference IEC reactor of Table I this works out to 
e-5.4 ms. 

V. COLLISIONS BETWEEN COMOVING IONS 

When mapped to radial locations in the bulk plasma 
( ro< r<a) the model IEC ion distribution function of Sec. II 
yields a local ion distribution that corresponds to two ion 
beams counterstreaming at speeds rtrv, [see Eq. (19)]. In this 
section we consider the effect of collisions between ions in 
the same beam (that is, comoving ions) on the longitudinal 
and transverse velocity dispersion of that beam. In earlier 
work, Rosenberg and Krall” considered the collisional evo- 
lution of the ion distribution function in a model in which the 
confining potential has a finite gradient at the plasma surface. 
They point out that, for a nearly monoenergetic ion distribu- 
tion function, the mean-squared ion velocity near the ion 
injection point (which is simply related to the longitudinal 
and transverse velocity dispersion discussed in Sec. IV) is 
small compared to ion streaming velocity, U, . Hence, the ion 
collision frequency, which goes as l/u3, will be large at the 
plasma surface. Rosenberg and Krall conclude that these 
edge collisions cause a relaxation of the longitudinal and 
transverse velocity dispersion toward isotropy ((Au: >$ 
-2(Az$),) at a rate 

^ 
d(Au”) ‘4 s&o -- 

dr edge colIisions a m(Au2) dh#%O,~ 

04 

where 

(4% 
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is the potential gradient scale length at ~=a. The effect of 
these edge collisions is to transfer energy between the longi- 
tudinal and transverse degrees of freedom. That is, to couple 
the energy spread of the ion beam to the quality of the ion 
focus. 

Edge collisions are omitted from our square-well model 
because r+ vanishes for a square well. However, collisions 
between comoving ions in the plasma bulk have the same 
effect-i.e., these collisions couple the longitudinal and 
transverse degrees of freedom, the collisional rate is large 
because the relative velocity of the &moving ions is small, 
and they act over most of the ion orbit, rather than just at the 
plasma surface. Collisions between comoving ions change 
the beam velocity dispersion at a rate 

d(Au”) 
-J- 

WPO 
dt 2 q&0( @ho,. (46) 

comoving ions m@v > 

Since rJa is expected to be less than unity, we conclude that 
bulk collisions between comoving ions dominate the edge 
collisions emphasized in Ref. 11. These collisions are in- 
cluded in our square-well model, and will be examined in 
detail in the remainder of this section. 

Following Rosenberg and Krall, we resolve the singular- 
ity associated with the delta function in the ion distribution 
function by modeling the internal structure of the beam-like 
ion distribution function in the plasma bulk by assuming that 
it is a drifting bi-Maxwellian. The longitudinal and trans- 
verse temperatures of the beam are chosen to reproduce the 
longitudinal and transverse velocity dispersion discussed in 
Sec. IV. The ion distribution function has a longitudinal ve- 
locity dispersion, 

Tp 
(Au:)= m,, 

and a transverse velocity dispersion, 

(47) 

(L2) 2Ty(r) 
W:>(r)= jgq~= m,. 

s 
(48) 

Note that the transverse velocity dispersion of the beam, 
(Au:), and the transverse temperature, T(,s), are simply re- 
lated to (L*) and the ion focal radius, r. [see Eq. (49) below]. 
Hence, we only introduce one new parameter, Tf), to de- 
scribe the internal structure of the counterstreaming ion 
beams. 

The transverse temperature, Ty’, is a strong function of 
radius. This strong radial variation in Ty’ results from the 
fact that different groups of ion orbits intersect at each radial 
location. Hence, we find it convenient to compute the con- 
tribution of collisions among comoving ions to the transverse 
velocity dispersion of the ion “beam” by relating it to 
d(L2)ldt. We may then compute the local value of T’,“‘(r) 
and the ion focal radius from the relations 

TIqr)=T’,S)(a) $ I_ q I r- 2 
($ Lg lq 

’ Or 2m,r . 

In the absence of collisions between comoving ions, the 
velocity dispersion would increase at the (bounce-averaged) 

rates computed in Sec. IV. These rates of increase in the 
beam longitudinal temperature and (L’) for ions of species s 
are 

dTf) 
dt (50) 

core coUisions 

and 

d(L2) 
dt 

= c,Li( z@),, . 
bulk collisions 

(51) 

A. Nearly monoenergetic ions, (7js)/qs@o)c$(rfjla2) 
We follow Kogan”’ in computing the collisional relax- 

ation of the beam velocity dispersion between the longitudi- 
nal and transverse degrees of freedom. In the spirit of the 
model IEC ion distribution function of Sec. II, we begin by 
considering a beam with a finite ion convergence radius (so 
that (L2)>O) and a nearly monoenergetic ion distribution 
function, such that Ty)( a) Z= T(is) or, equivalently, Tf’lq, +. 
<0.5r$a2. Then Ty)>T(IS) everywhere in the well, and the 
local rates of change in Ty) 

20 
and Tf) due to collisions among 

comoving ions are 

dT;“) 
dt comoving ions 

(52) 

and 

dTy) 1 
dt 

a-5 (53) 
comoving ions 

It follows that the local rate of change in (L2) due to colli- 
sions among comoving ions is 

4L2) 3 +-a--- 
dt 4 (54) 

comoving ipns 

These rates need to be averaged over that portion of the 
ion trajectory with rSr, , where 

r0 p s-------T 20r 
c Jiq I. O 

is the radius at which the cutoff in the longitudinal collisional 
integrals introduced in Sec. IV to remove the effect of colli- 
sions among comoving ions becomes effective (recall that 
we have taken ~,=0.95). The orbit-averaged rates are 

(56) 
and 

(57) 
Both core collisions and collisions among comoving 

ions lead to an increase in the longitudinal velocity disper- 
sion. However, even for a relatively poorly focused ion dis- 
tribution, rola < G/S c ,-0.21, the decrease in (L2) due to 
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collisions among comoving ions will dominate the increase 
due to collisions in the bulk plasma and (L*) will decrease. 
As a result, the ion distribution will rapidly evolve until 
T’,s)=~,s’ at r=a. 

B. Moderately thermalized ion distributions, 
sva2)~ +%dPo~ k&3 

We are led to consider the effects of collisions among 
comoving ions in the limit that the longitudinal velocity dis- 
persion is large compared to the transverse velocity disper- 
sion, T{,*‘> Ty’. In this limit the local rates of change in q,‘) 
and tic’ due to collisions among comoving ions are*’ 

dTf’ 
dt comoving ions 

(58) 

-@#‘)vo,, 631 

where e-2.718... is the base of the Naperian logarithms. 

C. Strongly thermaiized ion distributions, 
7;fs’ks4Jo~ kfw> 

Finally, we consider the regime q: ‘/qs +. 3 i( t-i/r:) 
=5x lo-*. In this limit the longitudinal beam temperature is 
greater than the local value of the transverse beam tempera- 
ture everywhere in the plasma bulk, and the orbit-averaged 
rates of change in the beam velocity dispersion are given by 

and 

%lcomo,., io”; ILL ($j I’* 

8TLS’ r2 
XLn - ( 1 -7 qs40v;fs. q&0 r. 

(59) 

It follows that the local rate of increase in (L*> due to colli- 
sions among comoving ions is 

(60) 

We perform the orbit average by dividing the ion orbit 
into a portion at small radius, r< rx , where Ty)( r)> Tf’, 
and a portion at large r, r> rx , where q)> T’,s)( r), using 
the expressions for the local rate of change in the longitudi- 
nal and transverse temperatures appropriate for each region. 
The radius rx , where Ty’( rx) = fl,“‘, is given by 

(61) 

Averaging these rates over the ion orbit, we obtain ex- 
pressions for the rates of change in the longitudinal and 
transverse beam temperatures valid for longitudinal beam 
temperatures in the range 

(62) 
and 
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dTf ) 

- comoving i,.,*-$l? ‘n(Y) dt 

and 

d@*) 
dt comoving ions 

Jet 4%or * (651 

D. Time evolution of 7’f), (L’}, and ~-,,/a 

We are now ready to examine the time evolution of lon- 
gitudinal velocity dispersion as measured by T:,S”/q,$o, and 
the transverse velocity dispersion as measured by (L*) or 
rola. Summing the term describing the rate of increase in 
Ti’) due to core collisions [as given by Eq. (50)] with the 
appropriate term describing the rate of change in Tft’ due to 
both collisions between comoving ions [from Eq. (56), (62), 
or (64), as appropriate], we obtain an expression for the total 
rate of change in the longitudinal beam temperature, 

fgltota,=; G(g. ~)(g2s40M7,1. (66) 

The function G,(Tf,S’/q,q50,rola) is displayed in Fig. 8 for 
deuterium ions in a DT plasma. We see that G, is weakly 
varying with both 
rola beyond 10V4 

~,s’/qs~o and rola. A further decrease in 
results in only a very small downward 

shift relative to the rola = 10Y4 curve of Fig. 8; whiIe at 
smaller values of Z’~“/~,C$~ the function G, goes to 

G~=d~+$Ln[~~~, [z<k$), (67) 

for any rola. We find that dTt,“ldt is positive for at1 values 
of Tf)lq,#o and rola. Hence, collisions will result in a 
monotonic increase of Ti”’ with time. 
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FXG. 8. The variation of the longitudinal beam heating rate, including both 
core collisions and collisions with comoving ions for deuterons in a DT 
plasma is displayed for Q/U = lo-’ (solid line), rola= 10e3 (long dashes), 
and ro/a = 10V4 (short dashes). 

The behavior of the transverse velocity dispersion as 
measured by (L’) is more interesting. Summing the term 
describing the rate of increase in (L2) due to core collisions 
[as given by Eq. (51)], with the appropriate term .describing 
the rate of change in (L2) due to both collisions between 
comoving ions [from Eqs. (57), (63), or (65), as appropriate] 
we obtain an expression for the total rate of change in the 
G”), 

(68) 

The function Hs(T~)Iqs~o ,rola) is displayed in Fig. 9. 
When Tf)/g,& is small (less than 0.0 17 rola for deu- 

terium in a DT plasma) collisions between comoving ions 
dominate the bulk plasma collisions so- that the net effect is 
rapid decrease in (L’) (i.e., a rapid decrease in the size of the 
ion focus, ro). For the smallest values of .Tf)/q,ycjoH, as- 
ymptotes to 

H&IP)/q&r roW 

i-” s  

5.0 
, 

0.0 ;’ 

-z .,,,,.: , , ,,,,,,: -, :1 ~ *?;?- 

FIG. 9, The variation in the total transverse beam heating rate as measured 
by the rate of increase in (L’), including both bulk collisions and collisions 
between comoving ions, is displayed for deuterium ions in a DT plasma 
with rola=lO-* (solid line), rola=lO-a (long dashes), and rola=10-4 
(short dashes) as a function of Thd)lqd+o. 

H 
fi a Tip 1 

s-c,- 8 2 
i 4d0<2(r0/a)’ * i 

However, for larger values of @)/qs& the orbit-averaged 
effect of collisions between comoving ions weakens, so that 
both (L2) and Ta”’ increase monotonically with time when 
~,d’lqdf$O>0.017rolu. 

The transition from collisional focusing to collisional de- 
focusing can be understood by examining the leading terms 
in the expression for d(L2)ldt in the moderately thermalized 

I ’ regime, Fro a I/ 2GTf)/qs&G $(r$rz), 

4L2) 
dt 

L:(v&bl (69) 

.where we have used Eq. (61) to express ( rxlro)2 as 
$Tf)Iq,&. It follows that the transition from focusing to 
defocusing for deuterium in a DT plasma occurs when 

Thd) d-- m r0 
i-i&? 16Cd a 

- ---PO.017 3. (70) 

After initial transients, in which the ion focal radius may 
decrease in size while Tf)lq,&, increases, the system will 
reach a state in which ~)/qs~,,Zrola. The longitudinal 
temperature and ion convergence then satisfy the equations 

(71) 

where we have taken Gd=1.3 (valid for and Tf’/q,r$, 
-r&as lo-“; see Fig. 8); and 

;(+4.3($-1(V&l; (73 

where we have taken Hd=6.4 (valid for T~d)lqd@-rola; 
see Fig. 9), and eliminated (L’) in favor of rolg using Eqs. 
(49). 

These equations have the solution 

I;;4,2.9dm (73) 
. . 

and 

(74) 

We conclude that -collisions between counterstreaming 
ions will initially lead to rapid thermalization of the distribu- 
tion of ion radial velocities [at a rate of order 
Wrd( @>~~ll- Once TII @) has increased to the extent that 
Tf’lq,&$O.O 1 7rola this process will be accompanied by 
the spreading of the ion focus. Finally, when Tf’/q,r& 
Zr,,/a, the increase in T~)/q,& and rola will proceed in 
concert at a rate of order (alr,,)(v;S(s)vol. As the ion focus 
spreads the rate of increase in the focal radius decreases so 
that it takes a time of order 

for the ion distribution function to relax to is.otropy and for 
the IEC configuration to be destroyed. 
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Our conclusions regarding the time evolution of the IEC 
distribution function is very different from that reached in 
Ref. I I, where steady-state, beam-like solutions to the ki- 
netic equation were found. Two key reasons for our com- 
pletely different results are the following. 

(1) The artificial constraint imposed in Eq. (11) of Ref. 
11, which prevents collisions between counterstreaming ion 
beams from producing any net increase in the velocity dis- 
persion (i.e., heating) of the ion beams 

(2) The neglect of the dominant term in the evolution of 
the beam temperature-the increase in the longitudinal ve- 
locity dispersion of the beam due to collisions in the plasma 
core. 

When this problem is treated correctly we see that there 
are no beam-like steady-state solutions to the kinetic equa- 
tion. 

VI. SCHEMES FOR MAINTAINING A STRONGLY 
FOCUSED ION DISTRIBUTION THAT DO NOT WORK 

We have shown that ion-ion collisions will cause the 
IEC distribution to relax toward an isotropic Maxwellian. At 
the high energies and relatively low volume-averaged densi- 
ties proposed for IEC devices, the ion collisional time scale 
is rather long--(#d)vo, is about 2.2 Hz (as compared to an 
ion bounce frequency of 1.1 MHz)-for the IEC reactor pa- 
rameters of Table I. Hence, it may be possible to prevent this 
collisional relaxation through some process that acts only 
weakly on the ion distribution function. We consider two 
such schemes that have been proposed by proponents of IEC 
fusion reactors in this section. 

A. Fusion reaction rates 

Bussard’ makes the rather surprising claim that the fu- 
sion reactions in an IEC device will remove fuel ions at a 
rate sufficient to maintain a nearly monoenergetic ion distri- 
bution function. In making this claim Bussard recognizes 
that the fusion reaction rate must be greater than the colli- 
sional energy-scattering rate if the loss of fuel ions by fusion 
reactions is to substantially alter the ion distribution function. 
In Sec. V we showed that the orbit-averaged collisional rate 
of increase in the beam velocity dispersion is 

(V%?rbit= 2 dt 4 ,& * ~~ltota~~dr(~j(v~‘“)“~,, (75) 
J 

while the orbit-averaged fusion rate for the deuterons is 
given by 

(76) 

Note that the orbit-averaged fusion rate scales with the core 
convergence ratio and ion density as (alrO)(n,)vO,---that is, 
in exactly the same manner as the rate of increase in the 
longitudinal velocity dispersion. We computed the orbit- 
averaged fusion rate following the methods described in Sec. 
III. This rate is plotted, together with the orbit-averaged en- 
ergy diffusion rate versus the potential well depth in Fig. 10. 
We see that the orbit-averaged energy diffusion rate substan- 
tially exceeds the orbit-averaged fusion rate at all potential 

J 

@Jo WV) 

FIG. 10. An orbit-averaged fusion rate coefficient (solid curve) and orbit- 
averaged energy diffusion rate (dashed curve) versus potential well depth, 
6, for deuterons in a DT plasma. The ion density, convergence ratio, etc. 
are taken from Table I. However, the relative magnitude of fusion and col- 
lisional rates are insensitive to these parameters. 

well depths considered (5 kVGq$G300 kV). We conclude 
that fusion reactions rates are not sufficient to materially ef- 
fect the form of the ion energy distribution function. 

The time required for complete relaxation of the ion an- 
isotropy is longer (by -alrc) than the instantaneous time 
scale for spreading of the ion energy distribution. Hence, one 
might hope that the loss of fuel ions through fusion reactions 
could maintain the ion anisotropy. We may estimate the re- 
sulting ion core radius by replacing “t” in Eq. (73) with the 
inverse of the orbit-averaged fusion reaction rate. After a bit 
of manipulation, this estimate takes the form 

$=7.3 
( &orbit 

M”4DTLlrbitP1* 
(77) 

We conclude that the removal of fuel ions by fusion reactions 
occurs at a rate that is insufficient to maintain an ion focus. 
The situation regarding maintenance of the ion anisotropy is 
essentially the same as that regarding maintenance of a non- 
Maxwellian ion energy distribution because the orbit- 
averaged fusion rate decreases as the ion focus spreads, 
thereby making fusion reactions less effective as a mecha- 
nism for removing fuel ions before they are scattered further 
in angle. 

6. Maintenance of ion anisotropy with a “cold” 
plasma mantle 

The basic idea inspiring the work of Rosenberg and 
Krall was that it might be possible to control the ion distri- 
bution function in an TEC device by manipulating the ion 
distribution function in the neighborhood of the ion injection 
point. In Sec. V we demonstrated that the calculation per- 
formed in Ref. I I is in error, and that collisions between ions 
with low reIative velocities cannot prevent thermalization of 
the ion distribution function. However, perhaps this only 
demonstrates that the wrong problem was addressed both in 
Sec. V and in Ref. 11, In this section we consider the related 
problem in which the ion distribution function at the injec- 
tion point is treated as a boundary condition. We are then 
able to force the transverse temperature to go to zero at the 
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lip of the potential well, which we now take at 
(E- L2/2m,a2) =O [rather than at (E- L2/2m,a2) 
= +qs&], so that this boundary conditionwill have greater 
influence on the distribution of trapped ions. 

It is convenient to adopt as velocity-space coordinates u, 
the particle speed normalized to the thermal velocity, and ,u, 
the cosine of the angle that the particle makes with the nor- 
mal when it strikes the surface of the spherical square-well 
potential. Note that both of these velocity-space coordinates 
can be expressed as functions of E and L”, 

2(e+ 4s450) U= J Ts ’ 
so that u and ,U are themselves constants of the single- 
particle motion. We assume that the steady-state ion distribu- 
tion function is nearly an isotropic Maxwellian (and verify 
this assumption a posteriori), so that we may use the usual 
test-particle collision operator. In the high-velocity limit 
(~k2) the steady-state kinetic equation may then be written 
as 

(80) 

We look for solutions in the form 

f(uJd=~ fLL(U)PL(Pu)v (81) 

where the PL&) are Legendre polynomials of index L, and 
the fL( u) satisfy 

(821 

We solve this equation on the domain 0~ u < u,, 
=dw, taking as our boundary condition a plasma 
with finite phase-space density and zero velocity spread at 
the ion injection point, 

f(u (83) 

Expanding this boundary condition in a Legendre series, we 
obtain f,Ju,,)=fs(L+ i) for L even, and JFL(u) =0 for L 
odd. 

The solutions of the kinetic equation with this boundary 
condition are shown in Fig. 11 for the first four even Leg- 
endre harmonics. We see that our highly anisotropic bound- 
ary condition has an appreciable effect on the distribution 
function only at the highest speeds, uS2. The L=O Legendre 
harmonic, fc(u), is the sum of a Maxwellian plus a small 
constant term required to match the boundary condition at 
u = u,, . The density and temperature of this Maxwellian 
must be determined from consideration of energy and par- 
ticle balance in analogy to the Pastukhov solution of the 
problem of electron confinement in magnetic mirrors.2”22 

-fo _---- f2 

ill 
________ f4 
-_---- b 

FIG. 11. The iirst four even Legendre harmonics of the steady-state ion 
distribution function when a zero transverse temperature boundary condition 
is applied at u=3. 

The bulk of the phase-space density is contained in fn( u), 
providing the a posteriori justification for the use of the test 
particle collision operator. 

The effective radius of the ion focus may be computed 
as a function of the ion speed from the root-mean-square 
value of the distance of closest approach, 

r,&u)=a Jfi=a JF. (84) 

We see that there is essentially no ion focusing at speeds less 
than twice the ion thermal velocity. We conclude that it is not 
possible to maintain a strongly anisotropic ion distribution 
function in an IFC device solely by controlling the form of 
the ion distribution function at the ion injection point. 

VII. SCHEMES FOR MAINTAINING A STRONGLY 
FOCUSED ION DISTRIBUTION THAT WORK, BUT 
REQUIRE TOO MUCH POWER 

We have shown that two mechanisms proposed by pro- 
ponents of IEC systems to maintain a strongly nonthermal 
ion distribution function will not be effective. In the absence 
of intervention the ion distribution function will thermalize 
in an ion-ion collision time. In this section we propose an 
approach for maintaining a strong ion focus in an IEC sys- 
tem based on the assumption that some means can be found 
to control the ion lifetime in the electrostatic trap, i.e., we 
assume that ions can be intentionally “pumped” out of the 
electrostatic trap before they have time to fully thermalize. 
Such schemes are plausible since the ion lifetime is in fact 
limited in electrostatic traps that use grids (due to the finite 
grid transparency), and in Penning traps (due the leakage of 
ions through the poles of the trap). Similar schemes were 
proposed (and studied extensively), in connection with main- 
taining an anisotropic ion-distribution in the thermal barrier 
cell of tandem mirrors.z3 

A. Power required to “pump” the ion distribution 

When an ion is pumped from the trap it is replaced by an 
ion with zero angular momentum and zero energy (i.e., with 
an ion whose kinetic energy within the potential well is 
4&c). Assuming that the lifetime of a typical ion is rpumpr 
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we can model the effects of ion pumping by adding appro- 
priate sink terms to Eqs. (66) and (68), yielding 

Tito,=; Gs(;)q.~oM’?,,,- 2 (8.5) 

and 

- =HsLf(@),,- 0. 
W2> 

dt total rww 
6-W 

Equations (85) and (86) have the steady-state solution 

f-0 
J 

4 -= 
a 3 fu#%ol~p”mp 

and 

(87) 

(88) 

where Eq. (49) was used to eliminate (L2) in favor of rola. 
In these steady-state solutions the two parameters de- 

scribing the ion distribution function (rola and Tf’lq,q50) 
are replaced by a single parameter, [7pump in Eqs. (87) and 
(SS)]. Alternatively, we may choose rola as the single pa- 
rameter characterizing the steady-state ion distribution func- 
tion. Equation (87) then determines the required pumping 
time, 

3 1 (rolaJ2 
Tpuw= 4 H, ( &yk, 1 (89) 

while Eq. (88) determines the longitudinal velocity disper- 
sion at the chosen convergence ratio. Equation (88) has been 
solved numerically (including the weak dependence of G, 
and H, on rola and 7$s’Iq,+o illustrated in Figs. 8 and 9) to 
determine G,( rola) and H,( rola) for these steady-state so- 
lutions. The residual dependence on the convergence ratio is 
weak-for deuterons in a DT plasma, Gd increases mono- 
tonically from 1.56 to 2.40 and H, decreases monotonically 
from 6.3 to 6.21 as rola decreases from 10-l to 10v4. For 
the IEC reactor parameters of Table I (t-,/a = 10b2), we ob- 
tain Cd* 
-5.5 #L&s. 

1.69, Hd=6.12, T6d’lq,&o--2.8X 10e3, and 7rurnp 

The energy required to remove an ion from the trap is 
estimated by the energy spread in the ion distribution, 

epump~msU,(AU:)“2=qs~o d-- 
w 

2 - 
4s40’ 

(90) 

Lower vaIues of epump are thermodynamically allowed,24 but 
is very difficult to see how lower pumping energies could be 
achieved in IEC systems as they have been described in the 
literature to date. Assuming a potential well depth of 
4bo-50.7 keV to maximize the DT fusion rate coefficient, it 
will require about 3.8 keV to remove each ion. 

The total power required to maintain the ion distribution 
function is then 

P Ni ~pmnp 2-P 
wmr - . . ‘-pump 

j; GdH~)“2q~oNil~j3’~(~~‘“)M1. (91) 

which comes to about 23 CW for the IEC reactor of Table I 
(which produces only 590 MW of fusion power). 

The power balance in this operating mode can be char- 
acterized by the fusion gain, 

(92) 

For the IEC reactor of Table I, we find Qn7~0.026. In fact, 
QnT will certainly be below this limit, as this estimate does 
not take account of the power required to maintain the po- 
tential well and support energy losses in the electron channel. 

The estimate of the upper limit on the fusion gain de- 
pends on the potential well depth, (PO, only through the com- 
bination 

Numerical evaluation shows this to be a very slowly increas- 
ing function of $. for 4oZ=50 kV. The value increases by 
10% as +a is increased from 50 kV to 75 kV, and by an 
additional 10% as I$~ is increased to 300 kV. Assuming that 
there must be some penalty to increasing (PO, we take QIo-75 
kV, yielding a 10% improvement in QnT (to QoTSO.028). 
The fusion gain also increases with decreasing ion conver- 
gence ratio, alro. Since a high ion convergence ratio is a 
defining feature of IEC systems, we will require alro~lO, 
The fusion gain is then limited to QoTC0.091.25 

B. Effect of a ‘“hard core” on pumping power 
requirements 

It has been suggested26 that the ion pumping power re- 
quirements can be mitigated by introducing a “hard core” in 
the electrostatic potential profile. We note that it is not en- 
tirely clear how such a hard core is to be established since 
the ion charge producing this hard core must be provided by 
ions that have sufficient energy to traverse the core (so these 
ions, at least, will undergo energy diffusion due to core col- 
lisions). Nevertheless, we devote this section to estimating 
the ion pumping requirements that would pertain if such a 
hard core potential can be produced. 

It was concluded in Sec. IV B that a leading cause of ion 
energy diffusion in IEC devices is collisions in the vicinity of 
the plasma core. This effect can be removed by setting the 
coefficient d, equal to zero. Note that this does not entirely 
eliminate ion energy diffusion-there remains the contribu- 
tion to ion energy diffusion from bulk collisions between 
comoving ions, as described in Sec. V. The analysis of the 
pumping power requirements presented in the previous sec- 
tion still applies. However, the residual dependence of G, 
and H, must be recomputed with dd set equal to zero. We 
find that Cd now varies from 0.361 to 0.889 and Hd varies 
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from 5.15 to 5.78 as rola decreases Tom 10-l to 10-4. The 
optimized fusion gain (which still occurs at rala=O.l and 
&=75 kV) is increased to Qn+O.21. 

These very disappointing limits on the fusion gain fol- 
low from the fact that the averaged fusion rate is small com- 
pared to the averaged collisional rate [see Eq. (92) and Fig. 
lo], so that the power required to maintain the nonthermal 
IEC ion distribution is substantially larger than the fusion 
power generated. The IEC reactor power balance is opti- 
mized by allowing the ion distribution to thermalize as much 
as is consistent with the operating regime in question (i.e., 
choosing the lowest ion convergence ratio, alro, consistent 
with an IEC configuration). The power required to maintain 
an ion distribution function that retains the defining charac- 
teristic of an IEC system (alrcZl0) is 11 times greater than 
the fusion power that this system might produce. If a “hard 
core” potential can be formed the reactor performance can be 
improved by a further factor of 2.3 to Qb+O.21. Reactor 
studies indicate that an economic DT fusion power reactor 
requires a much more favorable energy balance, QDT>lO. 
Hence, there appears to be no prospect that an economic 
electrical power generating reactor can be developed based 
on an inertial electrostatic confinement scheme. 

VIII. CONCLUSIONS 

We have presented a model for the ion distribution func- 
tion in an inertial electrostatic confinement system. This 
model is shown to reproduce the essential features of IEC 
systems-electrostatic confinement, strong centra1 peaking 
of the ions, and a nearly monoenergetic energy distribution. 
Using this model distribution function we are able to test key 
claims made by proponents of IEC systems. We find the 
following: 

ill 

(2) 

(31 

(4) 

(5) 

After averaging over collision angle and volume, the 
peak in the effective fusion rate coefficient for DT 
(( uv)$=9.OX 1o-22 m3/s at $~a%50 keV for the IEC 
distribution versus 8.9X1O-22 m3/s at T=75 keV for a 
thermal distribution) or D3He (( av)$u,*2.8~ LO-22 
m3/s at &o- 140 keV vs 2.5X 10vz2 m3/s at T=250 keV) 
reactions are not significantly higher than the peak in the 
corresponding thermal rate coefficient. 
Ion/ion collisions will cause the ion distribution function 
to relax toward a Maxwellian at an instantaneous rate 
that is enhanced relative to the ion-ion collision fr& 
quency (evaluated at the volume-averaged density) by 
one power of the convergence ratio, a/r0 . 
In the absence of a competing process, the ion distribu- 
tion will fully relax to an isotropic Maxwellian on the 
ion-ion collisional time scale (evaluated at the volume- 
averaged density). 
The means of preventing this relaxation of the ion dis- 
tribution function so far proposed by proponents of IEC 
schemes are not effective. 
The energy cost of maintaining an anisotropic ion distri- 
bution function through control of the ion lifetime is 
greater than the fusion power that would be produced by 
the IEC device. 
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This analysis is based on a particular model ion distribu- 
tion function. While the reactor operating point has -been 
optimized over the parameters of this model, it is possible 
that a more attractive power balance could be obtained by 
further optimization of the form of the ion distribution func- 
tion. A serious effort to perform such an optimization would 
require the development of a bounce-averaged Fokker 
Planck code in (e, L2) space. However, it seems most un- 
likely that such optimization will increase Q by the factor of 
-100 (or -SO if hard core potentials can be maintained) 
required to achieve an acceptable recirculating power frac- 
tion for an economic power plant. Hence, we conclude that 
inertial electrostatic confinement shows little promise as a 
basis for the development of commercial electrical power 
plants. 

The analysis does not place a lower limit on the unit size 
of an lEC reactor. Such a lower limit on the unit size will 
(presumably) follow from an analysis of electron energy con- 
finement and the energy cost of maintaining the spherical 
potential well. This leaves open the possibility that IEC- 
based reactors may prove useful as a means of generating a 
modest flux of 14 MeV neutrons for applications other than 
power generation, such as such as assaying, neutron imaging, 
materials studies, and isotope production. In such applica- 
tions a small unit size (PfusionSl kW) and, hence, smaller 
unit cost might compensate for modest values of Qnr . 
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APPENDIX: COLLISIONAL RATE COEFFICIENTS FOR 
A MONOENERGETIC IEC DISTRIBUTION 
FUNCTION 

In this appendix we compute the rate of increase in the 
transverse and longitudinal velocity dispersion, (Au:) and 
(Au;), for a test particle of species s and velocity v=u&, 
colliding with field particles of species s’. The distribution 
function of the field particles is taken to be the monoener- 
getic IEC model distribution function defined in Sec. II. 
Since the model IEC velocity distribution function varies as 
a function of radius, we expect these rates of increase in the 
longitudinal and transverse velocity dispersion to vary with 
radius. 

Rosenbluth, McDonald, and Judd27 give a compact ex- 
pression for the rate of increase in the velocity dispersion due 
to Coulomb collisions. Following these authors we use the 
symbols (Ati:) and (Au;) in this appendix only to denote the 
rate of increase in the velocity dispersion rather than the 
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velocity dispersion itself. In the main text these symbols are 
used to denote the velocity dispersion. These rates are given 
by 

(Av Av)s= T (Av Av)ssp, 

where (Av Av)~~~, the rate of increase in the velocity disper- 
sion in species s due to collisions with particles of species s’, 
is given by 

(Av Av)~~, = 

x Iv-V’I. 
Defining characteristic speeds v, for species s, and using the 
vector identity 

& ,v-vq= !g, 

we can write the rate of increase in the velocity dispersion as 

(Av Av)~~,= v;“‘u,~ 2 1 d3v’ j=Jv’) $, 
s 

where w=(v-v'), G=w/IwI, 1 is the identity tensor, and, 
following Book,16 we define 

$,$,- 4dq& Ln A,,1 ug = 2 3 msus 
The monoenergetic IEC distribution evaluated at radius 

r may be written in spherical coordinates as 

f$,(v,)- nsq H(lP’l-Po) 
2msr 2(1-Po) 

S(u)-us,), 

where the principle axis of the spherical coordinates is taken 
parallel to &, ,u’ is the cosine of the angle between v’ and 
&, IZ,’ (r) is the local value of the field ion density as given 
by Es. (9), 

J 
24s’40 us,= - 

m,r 

and 

po= ;iqp, i 

TGt-0, 

r>r(). 

The integral over the field ion speed is easily performed, 
yielding 

(Av A+,,, = @‘v,2 2 1; ,d& I,‘” 2 H;;$c’ 
0 

l-/Z (1 +u2-2/U)-“2 =- 
u 2(1-luo) 

2p (1 +U2-24’12 
-7 2(1 -fiol 

2 (l+U2-2p)3’* 

-52 2(1-iuo) * 

The only dependence on the azimuthal angle, 4, comes Combining these results, we obtain the rate of increase 
through the unit vector in the transverse velocity dispersion, 

+zt= (U ,,-p’)i$- Jm(il cos ++i, sin 4) 

It follows that the integral over an azimuthal angle acts only 
on the diads, yielding 

1 --/id2 

(z+- l-2/4’U,Yr) 
( I - i$i,) 

Because there is only one preferred direction in velocity 
space (&J, we are able to write (Av Av), in the form 

(hv Av)~~~=~(Au~)~~~(~-~~~~)+(A~~)~,~~~~~, 

where the rate of increase in the transverse velocity disper- 
sion is given by 

(Av~),,~=~Y~J~ 2 1’ d,uL) “:‘rr’,~’ 
-I 

iij 

1 
X 

u,2,+ 1 --2p?Ms’ 

1 l-/P 
- a (u,2,+ 1 -2#u’us,)3’2 ii ’ 

and the rate of increase in the longitudinal velocity disper- 
sion is given by 

(AU&~,= @‘u,2 $ /;,dp’ “:;‘,T’ 

l-/P 
(u,2,+ 1-2#t4,)3’2 

Two integrals remain to be evaluated, 

dCt’ 
1 -I-&2p’u 

1 Jl +l4*-2~& =....-- 
u 2(1-Po) 

and 

~2(/-w)= 1 f 
/J l-$2 

2(~-/-%~ (1+U2-2p54)31~d~’ 
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and the rate of increase in the longitudinal velocity disper- 
sion, 

and 

where 

IL(POP) 

~2(l,~~-~2(ruo,u!+~2(-~o,u)-z2(- l,u) - 4(l-Poj 1 
and 

For &=1 (corresponding to radial locations in the bulk 
plasma, where rSro), the lEC distribution function corre- 
sponds to two counterstreaming beams. We can remove the 
contribution of collisions between comoving particles from 
the collision integrals, IL and Z,, , by replacing the upper limit 
of 1 in the integrals I, and I, with /..+<l. This results in the 
modified collision integrals, 

and 

=I?(llc,~)-~2(~0,U)+~2(-~0,~)-~2(-1,~) - 
2(1-Po) 

The angular width of the counterstreaming beams, k, 
increases toward the plasma core (r=S ro). Hence, the proper 
choice of ,x~ involves a tradeoff between eliminating the ef- 
fects of collisions between comoving particles over most of 
the plasma bulk, while minimizing the effect of the cutoff on 
the collision operator near the plasma core, where the ion 
distribution function becomes isotropic, and the ansatz of 
counterstreaming beams breaks down. Our experience indi- 
cates that ,uc=0.95 provides an adequate compromise. 

Finally, we note that 

l- 1 
p~~Icr;~Po7~)l= 2 Ius, f 11 
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